python基于mysql实现的简单队列以及跨进程锁实例详解
通常在我们进行多进程应用开发的过程中,不可避免的会遇到多个进程访问同一个资源(临界资源)的状况,这时候必须通过加一个全局性的锁,来实现资源的同步访问(即:同一时间里只能有一个进程访问资源)。
举个例子如下:
假设我们用mysql来实现一个任务队列,实现的过程如下:
1. 在Mysql中创建Job表,用于储存队列任务,如下:
create table jobs( id auto_increment not null primary key, message text not null, job_status not null default 0 );
message 用来存储任务信息,job_status用来标识任务状态,假设只有两种状态,0:在队列中, 1:已出队列
2. 有一个生产者进程,往job表中放新的数据,进行排队:
insert into jobs(message) values('msg1');
3.假设有多个消费者进程,从job表中取排队信息,要做的操作如下:
select * from jobs where job_status=0 order by id asc limit 1; update jobs set job_status=1 where id = ?; -- id为刚刚取得的记录id
4. 如果没有跨进程的锁,两个消费者进程有可能同时取到重复的消息,导致一个消息被消费多次。这种情况是我们不希望看到的,于是,我们需要实现一个跨进程的锁。
=========================分割线=======================================
说到跨进程的锁实现,我们主要有几种实现方式:
(1)信号量
(2)文件锁fcntl
(3)socket(端口号绑定)
(4)signal
这几种方式各有利弊,总体来说前2种方式可能多一点,这里我就不详细说了,大家可以去查阅资料。
查资料的时候发现mysql中有锁的实现,适用于对于性能要求不是很高的应用场景,大并发的分布式访问可能会有瓶颈.
对此用python实现了一个demo,如下:
文件名:glock.py
#!/usr/bin/env python2.7 # # -*- coding:utf-8 -*- # # Desc : # import logging, time import MySQLdb class Glock: def __init__(self, db): self.db = db def _execute(self, sql): cursor = self.db.cursor() try: ret = None cursor.execute(sql) if cursor.rowcount != 1: logging.error("Multiple rows returned in mysql lock function.") ret = None else: ret = cursor.fetchone() cursor.close() return ret except Exception, ex: logging.error("Execute sql \"%s\" failed! Exception: %s", sql, str(ex)) cursor.close() return None def lock(self, lockstr, timeout): sql = "SELECT GET_LOCK('%s', %s)" % (lockstr, timeout) ret = self._execute(sql) if ret[0] == 0: logging.debug("Another client has previously locked '%s'.", lockstr) return False elif ret[0] == 1: logging.debug("The lock '%s' was obtained successfully.", lockstr) return True else: logging.error("Error occurred!") return None def unlock(self, lockstr): sql = "SELECT RELEASE_LOCK('%s')" % (lockstr) ret = self._execute(sql) if ret[0] == 0: logging.debug("The lock '%s' the lock is not released(the lock was not established by this thread).", lockstr) return False elif ret[0] == 1: logging.debug("The lock '%s' the lock was released.", lockstr) return True else: logging.error("The lock '%s' did not exist.", lockstr) return None #Init logging def init_logging(): sh = logging.StreamHandler() logger = logging.getLogger() logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s -%(module)s:%(filename)s-L%(lineno)d-%(levelname)s: %(message)s') sh.setFormatter(formatter) logger.addHandler(sh) logging.info("Current log level is : %s",logging.getLevelName(logger.getEffectiveLevel())) def main(): init_logging() db = MySQLdb.connect(host='localhost', user='root', passwd='') lock_name = 'queue' l = Glock(db) ret = l.lock(lock_name, 10) if ret != True: logging.error("Can't get lock! exit!") quit() time.sleep(10) logging.info("You can do some synchronization work across processes!") ##TODO ## you can do something in here ## l.unlock(lock_name) if __name__ == "__main__": main()
在main函数里:
l.lock(lock_name, 10) 中,10是表示timeout的时间是10秒,如果10秒还获取不了锁,就返回,执行后面的操作。
在这个demo中,在标记TODO的地方,可以将消费者从job表中取消息的逻辑放在这里。即分割线以上的.
2.假设有多个消费者进程,从job表中取排队信息,要做的操作如下:
select * from jobs where job_status=0 order by id asc limit 1; update jobs set job_status=1 where id = ?; -- id为刚刚取得的记录id
这样,就能保证多个进程访问临界资源时同步进行了,保证数据的一致性。
测试的时候,启动两个glock.py, 结果如下:
[@tj-10-47 test]# ./glock.py 2014-03-14 17:08:40,277 -glock:glock.py-L70-INFO: Current log level is : DEBUG 2014-03-14 17:08:40,299 -glock:glock.py-L43-DEBUG: The lock 'queue' was obtained successfully. 2014-03-14 17:08:50,299 -glock:glock.py-L81-INFO: You can do some synchronization work across processes! 2014-03-14 17:08:50,299 -glock:glock.py-L56-DEBUG: The lock 'queue' the lock was released.
可以看到第一个glock.py是 17:08:50解锁的,下面的glock.py是在17:08:50获取锁的,可以证实这样是完全可行的。
[@tj-10-47 test]# ./glock.py 2014-03-14 17:08:46,873 -glock:glock.py-L70-INFO: Current log level is : DEBUG 2014-03-14 17:08:50,299 -glock:glock.py-L43-DEBUG: The lock 'queue' was obtained successfully. 2014-03-14 17:09:00,299 -glock:glock.py-L81-INFO: You can do some synchronization work across processes! 2014-03-14 17:09:00,300 -glock:glock.py-L56-DEBUG: The lock 'queue' the lock was released. [@tj-10-47 test]#

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











MySQL and phpMyAdmin are powerful database management tools. 1) MySQL is used to create databases and tables, and to execute DML and SQL queries. 2) phpMyAdmin provides an intuitive interface for database management, table structure management, data operations and user permission management.

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.

In MySQL, the function of foreign keys is to establish the relationship between tables and ensure the consistency and integrity of the data. Foreign keys maintain the effectiveness of data through reference integrity checks and cascading operations. Pay attention to performance optimization and avoid common errors when using them.

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Laravel is suitable for projects that teams are familiar with PHP and require rich features, while Python frameworks depend on project requirements. 1.Laravel provides elegant syntax and rich features, suitable for projects that require rapid development and flexibility. 2. Django is suitable for complex applications because of its "battery inclusion" concept. 3.Flask is suitable for fast prototypes and small projects, providing great flexibility.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

The main difference between MySQL and MariaDB is performance, functionality and license: 1. MySQL is developed by Oracle, and MariaDB is its fork. 2. MariaDB may perform better in high load environments. 3.MariaDB provides more storage engines and functions. 4.MySQL adopts a dual license, and MariaDB is completely open source. The existing infrastructure, performance requirements, functional requirements and license costs should be taken into account when choosing.

SQL is a standard language for managing relational databases, while MySQL is a database management system that uses SQL. SQL defines ways to interact with a database, including CRUD operations, while MySQL implements the SQL standard and provides additional features such as stored procedures and triggers.
