


A brief analysis of JS prototype inheritance and class inheritance_Basic knowledge
Let’s look at the inheritance of JS classes first
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>JS类的继承</title> </head> <body> /* -- 类式继承 -- */ <script type="text/javascript"> //先声明一个超类 var Animal = function(name) { this.name = name; } //给这个超类的原型对象上添加方法 Animal.prototype.Eat = function() { console.log(this.name + " Eat"); }; //实例化这个超 var a = new Animal("Animal"); //再创建构造函数对象类 var Cat = function(name, sex) { //这个类中要调用超类Animal的构造函数,并将参数name传给它 Animal.call(this, name); this.sex = sex; } //这个子类的原型对象等于超类的实例 Cat.prototype = new Animal(); //因为子类的原型对象等于超类的实例,所以prototype.constructor这个方法也等于超类构造函数 console.log(Cat.prototype.constructor); //这个是Animal超类的引用,所以要从新赋值为自己本身 Cat.prototype.constructor = Cat; console.log(Cat.prototype.constructor); //子类本身添加了getSex 方法 Cat.prototype.getSex = function() { return this.sex; } //实例化这个子类 var _m = new Cat('cat', 'male'); //自身的方法 console.log(_m.getSex()); //male //继承超类的方法 console.log(_m.Eat()); //cat </script> </body> </html>
Let’s look at JS prototypal inheritance
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>JS原型继承</title> </head> <body> <!--原型继承--> <script type="text/javascript"> //clone()函数用来创建新的类Person对象 var clone = function(obj) { var _f = function() {}; //这句是原型式继承最核心的地方,函数的原型对象为对象字面量 _f.prototype = obj; return new _f; } //先声明一个对象字面量 var Animal = { somthing: 'apple', eat: function() { console.log("eat " + this.somthing); } } //不需要定义一个Person的子类,只要执行一次克隆即可 var Cat = clone(Animal); //可以直接获得Person提供的默认值,也可以添加或者修改属性和方法 console.log(Cat.eat()); Cat.somthing = 'orange'; console.log(Cat.eat()); //声明子类,执行一次克隆即可 var Someone = clone(Cat); </script> </body> </html>
We can try it out. JS class inheritance children.constructor==father returns true, while prototypal inheritance children.constructor==father returns false;
The above brief analysis of JS prototype inheritance and class inheritance is all the content shared by the editor. I hope it can give you a reference, and I hope you will support Script Home more.

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Face detection and recognition technology is already a relatively mature and widely used technology. Currently, the most widely used Internet application language is JS. Implementing face detection and recognition on the Web front-end has advantages and disadvantages compared to back-end face recognition. Advantages include reducing network interaction and real-time recognition, which greatly shortens user waiting time and improves user experience; disadvantages include: being limited by model size, the accuracy is also limited. How to use js to implement face detection on the web? In order to implement face recognition on the Web, you need to be familiar with related programming languages and technologies, such as JavaScript, HTML, CSS, WebRTC, etc. At the same time, you also need to master relevant computer vision and artificial intelligence technologies. It is worth noting that due to the design of the Web side

In function inheritance, use "base class pointer" and "derived class pointer" to understand the inheritance mechanism: when the base class pointer points to the derived class object, upward transformation is performed and only the base class members are accessed. When a derived class pointer points to a base class object, a downward cast is performed (unsafe) and must be used with caution.

Inheritance error debugging tips: Ensure correct inheritance relationships. Use the debugger to step through the code and examine variable values. Make sure to use the virtual modifier correctly. Examine the inheritance diamond problem caused by hidden inheritance. Check for unimplemented pure virtual functions in abstract classes.

The relationship between js and vue: 1. JS as the cornerstone of Web development; 2. The rise of Vue.js as a front-end framework; 3. The complementary relationship between JS and Vue; 4. The practical application of JS and Vue.

Detailed explanation of C++ function inheritance: Master the relationship between "is-a" and "has-a" What is function inheritance? Function inheritance is a technique in C++ that associates methods defined in a derived class with methods defined in a base class. It allows derived classes to access and override methods of the base class, thereby extending the functionality of the base class. "is-a" and "has-a" relationships In function inheritance, the "is-a" relationship means that the derived class is a subtype of the base class, that is, the derived class "inherits" the characteristics and behavior of the base class. The "has-a" relationship means that the derived class contains a reference or pointer to the base class object, that is, the derived class "owns" the base class object. SyntaxThe following is the syntax for how to implement function inheritance: classDerivedClass:pu

Inheritance and polymorphism affect the coupling of classes: Inheritance increases coupling because the derived class depends on the base class. Polymorphism reduces coupling because objects can respond to messages in a consistent manner through virtual functions and base class pointers. Best practices include using inheritance sparingly, defining public interfaces, avoiding adding data members to base classes, and decoupling classes through dependency injection. A practical example showing how to use polymorphism and dependency injection to reduce coupling in a bank account application.

What is object-oriented programming? Object-oriented programming (OOP) is a programming paradigm that abstracts real-world entities into classes and uses objects to represent these entities. Classes define the properties and behavior of objects, and objects instantiate classes. The main advantage of OOP is that it makes code easier to understand, maintain and reuse. Basic Concepts of OOP The main concepts of OOP include classes, objects, properties and methods. A class is the blueprint of an object, which defines its properties and behavior. An object is an instance of a class and has all the properties and behaviors of the class. Properties are characteristics of an object that can store data. Methods are functions of an object that can operate on the object's data. Advantages of OOP The main advantages of OOP include: Reusability: OOP can make the code more

In PHPOOP, self:: refers to the current class, parent:: refers to the parent class, static:: is used for late static binding. 1.self:: is used for static method and constant calls, but does not support late static binding. 2.parent:: is used for subclasses to call parent class methods, and private methods cannot be accessed. 3.static:: supports late static binding, suitable for inheritance and polymorphism, but may affect the readability of the code.
