How to use PyTorch for deep learning on CentOS
Using PyTorch for deep learning on CentOS, you can follow these steps:
1. Install Anaconda3
First, you need to install the Anaconda3 environment on CentOS. You can download the installation package suitable for CentOS from the official website of Anaconda and follow the installation wizard to install it.
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh
2. Create and activate the virtual environment
Create a new virtual environment and activate it. For example, create a virtual environment called pytorch and install Python version 3.8.
conda create -n pytorch python=3.8 conda activated pytorch
3. Install PyTorch
In an activated environment, use conda to install PyTorch. Select the appropriate installation command based on whether GPU support is required. If GPU support is required, CUDA and cuDNN need to be installed.
Install CPU-enabled PyTorch
conda install pytorch torchvision torchaudio cpuonly -c pytorch
Install GPU-enabled PyTorch
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c conda-forge
Note: The version number of cudatoolkit may need to be adjusted according to your CUDA version. You can view available CUDA versions by running conda info cudatoolkit.
4. Verify the installation
After the installation is completed, you can verify that PyTorch is installed successfully. Run the following Python code:
import torch print(torch.__version__) print(torch.cuda.is_available())
If everything works fine, you should be able to see the version number of PyTorch and whether CUDA is available (depending on your system configuration).
5. Carry out deep learning projects
Once PyTorch is installed successfully, you can start working on a deep learning project. Here is a simple example showing how to define and train a neural network using PyTorch:
Defining neural networks
import torch import torch.nn as nn import torch.optim as optim class SimpleNN(nn.Module): def __init__(self): super(SimpleNN, self).__init__() self.fc1 = nn.Linear(784, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) Return x model = SimpleNN()
Prepare data
from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor()]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
Training the model
criteria = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) for epoch in range(5): for data, target in train_loader: optimizer.zero_grad() output = model(data) loss = criteria(output, target) loss.backward() optimizer.step()
Through the above steps, you can successfully install PyTorch on CentOS and start a deep learning project. If you encounter problems during the installation process, it is recommended to consult the official PyTorch documentation or seek community help.
The above is the detailed content of How to use PyTorch for deep learning on CentOS. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Recommended reliable digital currency trading platforms: 1. OKX, 2. Binance, 3. Coinbase, 4. Kraken, 5. Huobi, 6. KuCoin, 7. Bitfinex, 8. Gemini, 9. Bitstamp, 10. Poloniex, these platforms are known for their security, user experience and diverse functions, suitable for users at different levels of digital currency transactions

Bitcoin’s price ranges from $20,000 to $30,000. 1. Bitcoin’s price has fluctuated dramatically since 2009, reaching nearly $20,000 in 2017 and nearly $60,000 in 2021. 2. Prices are affected by factors such as market demand, supply, and macroeconomic environment. 3. Get real-time prices through exchanges, mobile apps and websites. 4. Bitcoin price is highly volatile, driven by market sentiment and external factors. 5. It has a certain relationship with traditional financial markets and is affected by global stock markets, the strength of the US dollar, etc. 6. The long-term trend is bullish, but risks need to be assessed with caution.

The top ten digital currency exchanges such as Binance, OKX, gate.io have improved their systems, efficient diversified transactions and strict security measures.

The top ten cryptocurrency trading platforms in the world include Binance, OKX, Gate.io, Coinbase, Kraken, Huobi Global, Bitfinex, Bittrex, KuCoin and Poloniex, all of which provide a variety of trading methods and powerful security measures.

The top ten cryptocurrency exchanges in the world in 2025 include Binance, OKX, Gate.io, Coinbase, Kraken, Huobi, Bitfinex, KuCoin, Bittrex and Poloniex, all of which are known for their high trading volume and security.

Currently ranked among the top ten virtual currency exchanges: 1. Binance, 2. OKX, 3. Gate.io, 4. Coin library, 5. Siren, 6. Huobi Global Station, 7. Bybit, 8. Kucoin, 9. Bitcoin, 10. bit stamp.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

Measuring thread performance in C can use the timing tools, performance analysis tools, and custom timers in the standard library. 1. Use the library to measure execution time. 2. Use gprof for performance analysis. The steps include adding the -pg option during compilation, running the program to generate a gmon.out file, and generating a performance report. 3. Use Valgrind's Callgrind module to perform more detailed analysis. The steps include running the program to generate the callgrind.out file and viewing the results using kcachegrind. 4. Custom timers can flexibly measure the execution time of a specific code segment. These methods help to fully understand thread performance and optimize code.
