Home Technology peripherals AI Fine-Tuning LLaMA 2: A Step-by-Step Guide to Customizing the Large Language Model

Fine-Tuning LLaMA 2: A Step-by-Step Guide to Customizing the Large Language Model

Mar 09, 2025 am 11:09 AM

Meta's LLaMA sparked a surge in Large Language Model (LLM) development, aiming to rival models like GPT-3.5. The open-source community rapidly produced increasingly powerful models, but these advancements weren't without challenges. Many open-source LLMs had restrictive licenses (research use only), required substantial budgets for fine-tuning, and were expensive to deploy.

LLaMA's new iteration addresses these issues with a commercial license and new methods enabling fine-tuning on consumer-grade GPUs with limited memory. This democratizes AI, allowing even smaller organizations to create tailored models.

This guide demonstrates fine-tuning Llama-2 on Google Colab, utilizing efficient techniques to overcome resource constraints. We'll explore methodologies that minimize memory usage and accelerate training.

Fine-Tuning LLaMA 2: A Step-by-Step Guide to Customizing the Large Language Model

Image generated by Author using DALL-E 3

Fine-Tuning Llama-2: A Step-by-Step Guide

This tutorial fine-tunes the 7-billion parameter Llama-2 model on a T4 GPU (available on Google Colab or Kaggle). The T4's 16GB VRAM necessitates parameter-efficient fine-tuning, specifically using QLoRA (4-bit precision). We'll utilize the Hugging Face ecosystem (transformers, accelerate, peft, trl, bitsandbytes).

1. Setup:

Install necessary libraries:

<code>%%capture
%pip install accelerate peft bitsandbytes transformers trl</code>
Copy after login
Copy after login

Import modules:

<code>import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig
from trl import SFTTrainer</code>
Copy after login

2. Model & Dataset Selection:

We'll use NousResearch/Llama-2-7b-chat-hf (a readily accessible equivalent to the official Llama-2) as the base model and mlabonne/guanaco-llama2-1k as our smaller training dataset.

<code>base_model = "NousResearch/Llama-2-7b-chat-hf"
guanaco_dataset = "mlabonne/guanaco-llama2-1k"
new_model = "llama-2-7b-chat-guanaco"</code>
Copy after login

Images illustrating the Hugging Face model and dataset are included here, same as original.

3. Loading Data & Model:

Load the dataset:

<code>dataset = load_dataset(guanaco_dataset, split="train")</code>
Copy after login

Configure 4-bit quantization using QLoRA:

<code>compute_dtype = getattr(torch, "float16")
quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=False,
)</code>
Copy after login

Load the Llama-2 model with 4-bit quantization:

<code>model = AutoModelForCausalLM.from_pretrained(
    base_model,
    quantization_config=quant_config,
    device_map={"": 0}
)
model.config.use_cache = False
model.config.pretraining_tp = 1</code>
Copy after login

Load the tokenizer:

<code>tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"</code>
Copy after login

Image illustrating QLoRA is included here, same as original.

4. PEFT Configuration:

Define PEFT parameters for efficient fine-tuning:

<code>peft_params = LoraConfig(
    lora_alpha=16,
    lora_dropout=0.1,
    r=64,
    bias="none",
    task_type="CAUSAL_LM",
)</code>
Copy after login

5. Training Parameters:

Set training hyperparameters (output directory, epochs, batch sizes, learning rate, etc.). Details are the same as the original.

6. Fine-tuning with SFT:

Use the SFTTrainer from the TRL library for supervised fine-tuning:

<code>trainer = SFTTrainer(
    model=model,
    train_dataset=dataset,
    peft_config=peft_params,
    dataset_text_field="text",
    max_seq_length=None,
    tokenizer=tokenizer,
    args=training_params,
    packing=False,
)

trainer.train()
trainer.model.save_pretrained(new_model)
trainer.tokenizer.save_pretrained(new_model)</code>
Copy after login

Screenshots showing training progress and model saving are included here, same as original.

7. Evaluation:

Use the transformers pipeline to test the fine-tuned model. Examples are provided, same as original.

8. Tensorboard Visualization:

Launch Tensorboard to monitor training metrics.

<code>%%capture
%pip install accelerate peft bitsandbytes transformers trl</code>
Copy after login
Copy after login

Screenshot of Tensorboard is included here, same as original.

Conclusion:

This guide showcases efficient Llama-2 fine-tuning on limited hardware. The use of QLoRA and other techniques makes advanced LLMs accessible to a wider audience. Further resources and learning paths are mentioned at the end, similar to the original, but without the marketing calls to action.

The above is the detailed content of Fine-Tuning LLaMA 2: A Step-by-Step Guide to Customizing the Large Language Model. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Getting Started With Meta Llama 3.2 - Analytics Vidhya Getting Started With Meta Llama 3.2 - Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta's Llama 3.2: A Leap Forward in Multimodal and Mobile AI Meta recently unveiled Llama 3.2, a significant advancement in AI featuring powerful vision capabilities and lightweight text models optimized for mobile devices. Building on the success o

10 Generative AI Coding Extensions in VS Code You Must Explore 10 Generative AI Coding Extensions in VS Code You Must Explore Apr 13, 2025 am 01:14 AM

Hey there, Coding ninja! What coding-related tasks do you have planned for the day? Before you dive further into this blog, I want you to think about all your coding-related woes—better list those down. Done? – Let&#8217

AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More Apr 11, 2025 pm 12:01 PM

This week's AI landscape: A whirlwind of advancements, ethical considerations, and regulatory debates. Major players like OpenAI, Google, Meta, and Microsoft have unleashed a torrent of updates, from groundbreaking new models to crucial shifts in le

Selling AI Strategy To Employees: Shopify CEO's Manifesto Selling AI Strategy To Employees: Shopify CEO's Manifesto Apr 10, 2025 am 11:19 AM

Shopify CEO Tobi Lütke's recent memo boldly declares AI proficiency a fundamental expectation for every employee, marking a significant cultural shift within the company. This isn't a fleeting trend; it's a new operational paradigm integrated into p

A Comprehensive Guide to Vision Language Models (VLMs) A Comprehensive Guide to Vision Language Models (VLMs) Apr 12, 2025 am 11:58 AM

Introduction Imagine walking through an art gallery, surrounded by vivid paintings and sculptures. Now, what if you could ask each piece a question and get a meaningful answer? You might ask, “What story are you telling?

GPT-4o vs OpenAI o1: Is the New OpenAI Model Worth the Hype? GPT-4o vs OpenAI o1: Is the New OpenAI Model Worth the Hype? Apr 13, 2025 am 10:18 AM

Introduction OpenAI has released its new model based on the much-anticipated “strawberry” architecture. This innovative model, known as o1, enhances reasoning capabilities, allowing it to think through problems mor

Reading The AI Index 2025: Is AI Your Friend, Foe, Or Co-Pilot? Reading The AI Index 2025: Is AI Your Friend, Foe, Or Co-Pilot? Apr 11, 2025 pm 12:13 PM

The 2025 Artificial Intelligence Index Report released by the Stanford University Institute for Human-Oriented Artificial Intelligence provides a good overview of the ongoing artificial intelligence revolution. Let’s interpret it in four simple concepts: cognition (understand what is happening), appreciation (seeing benefits), acceptance (face challenges), and responsibility (find our responsibilities). Cognition: Artificial intelligence is everywhere and is developing rapidly We need to be keenly aware of how quickly artificial intelligence is developing and spreading. Artificial intelligence systems are constantly improving, achieving excellent results in math and complex thinking tests, and just a year ago they failed miserably in these tests. Imagine AI solving complex coding problems or graduate-level scientific problems – since 2023

3 Methods to Run Llama 3.2 - Analytics Vidhya 3 Methods to Run Llama 3.2 - Analytics Vidhya Apr 11, 2025 am 11:56 AM

Meta's Llama 3.2: A Multimodal AI Powerhouse Meta's latest multimodal model, Llama 3.2, represents a significant advancement in AI, boasting enhanced language comprehension, improved accuracy, and superior text generation capabilities. Its ability t

See all articles