Home Technology peripherals AI Exploring Text-Embedding-3-Large: A Comprehensive Guide to the new OpenAI Embeddings

Exploring Text-Embedding-3-Large: A Comprehensive Guide to the new OpenAI Embeddings

Mar 07, 2025 am 09:41 AM

OpenAI's latest text embedding models, text-embedding-3-large and text-embedding-3-small, are revolutionizing text analysis. This article explores their capabilities, applications, and practical usage.

Embeddings translate human language into machine-readable formats, crucial for AI tasks. OpenAI's new models significantly improve this process for developers and data scientists. We'll cover their core functions, applications, and effective implementation.

Understanding Text Embeddings

Text embeddings are numerical representations capturing the semantic meaning of text. They are essential for various NLP tasks, including sentiment analysis and text classification. Our guide, "Introduction to Text Embeddings with the OpenAI API," provides a comprehensive overview of using the OpenAI API for embedding creation.

Exploring Text-Embedding-3-Large: A Comprehensive Guide to the new OpenAI Embeddings

Text Embeddings Illustration

Newcomers to embeddings should consult our "Introduction to Embeddings with the OpenAI API" course.

OpenAI's New Embedding Models

Released January 25, 2024, these models represent text in high-dimensional space for improved understanding. text-embedding-3-small prioritizes speed and storage, while text-embedding-3-large offers superior accuracy. The dimensions parameter allows adjusting text-embedding-3-large to 1536 dimensions (from its native 3072) without significant performance loss.

Benchmarking

text-embedding-3-large surpasses previous models (including text-embedding-ada-002) on MIRACL and MTEB benchmarks. The table below summarizes the comparison:

Model Dimension Max token Knowledge cutoff Pricing ($/1k tokens) MIRACL average MTEB average
ada v2 1536 8191 September 2021 0.0001 31.4 61.0
text-embedding-3-small 0.00002 44.0 62.3
text-embedding-3-large 3072 0.00013 54.9 64.6
Model
Dimension Max token Knowledge cutoff Pricing ($/1k tokens) MIRACL average MTEB average
ada v2 1536 8191 September 2021 0.0001 31.4 61.0
text-embedding-3-small 0.00002 44.0 62.3
text-embedding-3-large 3072 0.00013 54.9 64.6

Higher dimensions in text-embedding-3-large (3072 vs. 1536) enhance performance but increase cost. Model selection depends on task requirements (multilingual needs, text complexity, budget). text-embedding-3-large excels in complex, multilingual scenarios, while text-embedding-3-small suits budget-conscious applications.

Applications

Both models find diverse applications:

text-embedding-3-large Applications:

Exploring Text-Embedding-3-Large: A Comprehensive Guide to the new OpenAI Embeddings

Applications of text-embedding-3-large (images generated using GPT-4)

  • Multilingual customer support automation (18 languages)
  • Advanced semantic search engines
  • Cross-lingual content recommendation systems

text-embedding-3-small Applications:

Exploring Text-Embedding-3-Large: A Comprehensive Guide to the new OpenAI Embeddings

Applications of text-embedding-3-small (Image generated using GPT-4)

  • Cost-effective sentiment analysis
  • Scalable content categorization
  • Efficient language learning tools

Step-by-Step Guide: Document Similarity

This guide uses the CORD-19 dataset (available on Kaggle) to demonstrate document similarity using all three models. Install necessary libraries:

pip -q install tiktoken openai
Copy after login

Import libraries:

import os
import tiktoken
import numpy as np
import pandas as pd
from openai import OpenAI
from sklearn.metrics.pairwise import cosine_similarity
Copy after login

Load and preprocess data (a 1000-document sample is used for brevity):

scientific_docs = pd.read_parquet("./data/cord19_df_sample.parquet")

def concatenate_columns_with_null_handling(df, body_text_column, abstract_column, title_column, new_col_name):
    df[new_col_name] = df[body_text_column].fillna('') + df[abstract_column].fillna('') + df[title_column].fillna('')
    return df

new_scientific_docs = concatenate_columns_with_null_handling(scientific_docs, "body_text", "abstract", "title", "concatenated_text")

def num_tokens_from_text(text: str, encoding_name="cl100k_base"):
    encoding = tiktoken.get_encoding(encoding_name)
    num_tokens = len(encoding.encode(text))
    return num_tokens

new_scientific_docs['num_tokens'] = new_scientific_docs["concatenated_text"].apply(lambda x: num_tokens_from_text(x))
smaller_tokens_docs = new_scientific_docs[new_scientific_docs['num_tokens'] <= 8191]
smaller_tokens_docs_reset = smaller_tokens_docs.reset_index(drop=True)
Copy after login

Set OpenAI API key and create client:

os.environ["OPENAI_API_KEY"] = "YOUR KEY"
client = OpenAI()
Copy after login

Generate embeddings:

def get_embedding(text_to_embbed, model_ID):
    text = text_to_embbed.replace("\n", " ")
    return client.embeddings.create(input=[text_to_embbed], model=model_ID).data[0].embedding

smaller_tokens_docs_reset['text-embedding-3-small'] = smaller_tokens_docs_reset["concatenated_text"].apply(lambda x: get_embedding(x, "text-embedding-3-small"))
smaller_tokens_docs_reset['text-embedding-3-large'] = smaller_tokens_docs_reset["concatenated_text"].apply(lambda x: get_embedding(x, "text-embedding-3-large"))
smaller_tokens_docs_reset['text-embedding-ada-002'] = smaller_tokens_docs_reset["concatenated_text"].apply(lambda x: get_embedding(x, "text-embedding-ada-002"))
Copy after login

Find similar documents using cosine similarity:

def find_top_N_similar_documents(df, chosen_index, embedding_column_name, top_N=3):
    chosen_document_embedding = np.array(df.iloc[chosen_index][embedding_column_name]).reshape(1, -1)
    embedding_matrix = np.vstack(df[embedding_column_name])
    similarity_scores = cosine_similarity(chosen_document_embedding, embedding_matrix)[0]
    df_temp = df.copy()
    df_temp['similarity_to_chosen'] = similarity_scores
    similar_documents = df_temp.drop(index=chosen_index).sort_values(by='similarity_to_chosen', ascending=False)
    top_N_similar = similar_documents.head(top_N)
    return top_N_similar[["concatenated_text", 'similarity_to_chosen']]

chosen_index = 0
top_3_similar_3_small = find_top_N_similar_documents(smaller_tokens_docs_reset, chosen_index, "text-embedding-3-small")
top_3_similar_3_large = find_top_N_similar_documents(smaller_tokens_docs_reset, chosen_index, "text-embedding-3-large")
top_3_similar_ada_002 = find_top_N_similar_documents(smaller_tokens_docs_reset, chosen_index, "text-embedding-ada-002")

print("Top 3 Similar Documents with:")
print("--> text-embedding-3-small")
print(top_3_similar_3_small)
print("\n")
print("--> text-embedding-3-large")
print(top_3_similar_3_large)
print("\n")
print("--> text-embedding-ada-002")
print(top_3_similar_ada_002)
print("\n")
Copy after login

Conclusion

OpenAI's new embedding models offer substantial improvements in NLP. The choice between text-embedding-3-large and text-embedding-3-small depends on the specific application's needs, balancing accuracy and cost. This guide provides the tools to effectively utilize these powerful models in various projects. Further resources on the OpenAI API and fine-tuning are available.

The above is the detailed content of Exploring Text-Embedding-3-Large: A Comprehensive Guide to the new OpenAI Embeddings. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1267
29
C# Tutorial
1239
24
Getting Started With Meta Llama 3.2 - Analytics Vidhya Getting Started With Meta Llama 3.2 - Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta's Llama 3.2: A Leap Forward in Multimodal and Mobile AI Meta recently unveiled Llama 3.2, a significant advancement in AI featuring powerful vision capabilities and lightweight text models optimized for mobile devices. Building on the success o

10 Generative AI Coding Extensions in VS Code You Must Explore 10 Generative AI Coding Extensions in VS Code You Must Explore Apr 13, 2025 am 01:14 AM

Hey there, Coding ninja! What coding-related tasks do you have planned for the day? Before you dive further into this blog, I want you to think about all your coding-related woes—better list those down. Done? – Let&#8217

AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More Apr 11, 2025 pm 12:01 PM

This week's AI landscape: A whirlwind of advancements, ethical considerations, and regulatory debates. Major players like OpenAI, Google, Meta, and Microsoft have unleashed a torrent of updates, from groundbreaking new models to crucial shifts in le

Selling AI Strategy To Employees: Shopify CEO's Manifesto Selling AI Strategy To Employees: Shopify CEO's Manifesto Apr 10, 2025 am 11:19 AM

Shopify CEO Tobi Lütke's recent memo boldly declares AI proficiency a fundamental expectation for every employee, marking a significant cultural shift within the company. This isn't a fleeting trend; it's a new operational paradigm integrated into p

GPT-4o vs OpenAI o1: Is the New OpenAI Model Worth the Hype? GPT-4o vs OpenAI o1: Is the New OpenAI Model Worth the Hype? Apr 13, 2025 am 10:18 AM

Introduction OpenAI has released its new model based on the much-anticipated “strawberry” architecture. This innovative model, known as o1, enhances reasoning capabilities, allowing it to think through problems mor

A Comprehensive Guide to Vision Language Models (VLMs) A Comprehensive Guide to Vision Language Models (VLMs) Apr 12, 2025 am 11:58 AM

Introduction Imagine walking through an art gallery, surrounded by vivid paintings and sculptures. Now, what if you could ask each piece a question and get a meaningful answer? You might ask, “What story are you telling?

3 Methods to Run Llama 3.2 - Analytics Vidhya 3 Methods to Run Llama 3.2 - Analytics Vidhya Apr 11, 2025 am 11:56 AM

Meta's Llama 3.2: A Multimodal AI Powerhouse Meta's latest multimodal model, Llama 3.2, represents a significant advancement in AI, boasting enhanced language comprehension, improved accuracy, and superior text generation capabilities. Its ability t

Newest Annual Compilation Of The Best Prompt Engineering Techniques Newest Annual Compilation Of The Best Prompt Engineering Techniques Apr 10, 2025 am 11:22 AM

For those of you who might be new to my column, I broadly explore the latest advances in AI across the board, including topics such as embodied AI, AI reasoning, high-tech breakthroughs in AI, prompt engineering, training of AI, fielding of AI, AI re

See all articles