Home Technology peripherals AI Fine-Tuning Llama 3.1 for Text Classification

Fine-Tuning Llama 3.1 for Text Classification

Mar 05, 2025 am 11:08 AM

This tutorial demonstrates fine-tuning the Llama 3.1-8b-It model for mental health sentiment analysis. We'll customize the model to predict patient mental health status from text data, merge the adapter with the base model, and deploy the complete model on the Hugging Face Hub. Crucially, remember that ethical considerations are paramount when using AI in healthcare; this example is for illustrative purposes only.

We'll cover accessing Llama 3.1 models via Kaggle, using the Transformers library for inference, and the fine-tuning process itself. A prior understanding of LLM fine-tuning (see our "An Introductory Guide to Fine-Tuning LLMs") is beneficial.

Fine-Tuning Llama 3.1 for Text Classification

Image by Author

Understanding Llama 3.1

Llama 3.1, Meta AI's multilingual large language model (LLM), excels in language understanding and generation. Available in 8B, 70B, and 405B parameter versions, it's built on an auto-regressive architecture with optimized transformers. Trained on diverse public data, it supports eight languages and boasts a 128k context length. Its commercial license is readily accessible, and it outperforms several competitors in various benchmarks.

Fine-Tuning Llama 3.1 for Text Classification

Source: Llama 3.1 (meta.com)

Accessing and Using Llama 3.1 on Kaggle

We'll leverage Kaggle's free GPUs/TPUs. Follow these steps:

  1. Register on meta.com (using your Kaggle email).
  2. Access the Llama 3.1 Kaggle repository and request model access.
  3. Launch a Kaggle notebook using the provided "Code" button.
  4. Select your preferred model version and add it to the notebook.
  5. Install necessary packages (%pip install -U transformers accelerate).
  6. Load the model and tokenizer:
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

base_model = "/kaggle/input/llama-3.1/transformers/8b-instruct/1"

tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model, return_dict=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")
Copy after login
  1. Create prompts and run inference:
messages = [{"role": "user", "content": "What is the tallest building in the world?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=120, do_sample=True)
print(outputs[0]["generated_text"])
Copy after login

Fine-Tuning Llama 3.1 for Text Classification

Fine-tuning Llama 3.1 for Mental Health Classification

  1. Setup: Start a new Kaggle notebook with Llama 3.1, install required packages (bitsandbytes, transformers, accelerate, peft, trl), and add the "Sentiment Analysis for Mental Health" dataset. Configure Weights & Biases (using your API key).

  2. Data Processing: Load the dataset, clean it (removing ambiguous categories: "Suicidal," "Stress," "Personality Disorder"), shuffle, and split into training, evaluation, and testing sets (using 3000 samples for efficiency). Create prompts incorporating statements and labels.

  3. Model Loading: Load the Llama-3.1-8b-instruct model using 4-bit quantization for memory efficiency. Load the tokenizer and set the pad token ID.

  4. Pre-Fine-tuning Evaluation: Create functions to predict labels and evaluate model performance (accuracy, classification report, confusion matrix). Assess the model's baseline performance before fine-tuning.

  5. Fine-tuning: Configure LoRA using appropriate parameters. Set up training arguments (adjust as needed for your environment). Train the model using SFTTrainer. Monitor progress using Weights & Biases.

  6. Post-Fine-tuning Evaluation: Re-evaluate the model's performance after fine-tuning.

  7. Merging and Saving: In a new Kaggle notebook, merge the fine-tuned adapter with the base model using PeftModel.from_pretrained() and model.merge_and_unload(). Test the merged model. Save and push the final model and tokenizer to the Hugging Face Hub.

Remember to replace placeholders like /kaggle/input/... with your actual file paths. The complete code and detailed explanations are available in the original, longer response. This condensed version provides a high-level overview and key code snippets. Always prioritize ethical considerations when working with sensitive data.

The above is the detailed content of Fine-Tuning Llama 3.1 for Text Classification. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Best AI Art Generators (Free & Paid) for Creative Projects Best AI Art Generators (Free & Paid) for Creative Projects Apr 02, 2025 pm 06:10 PM

The article reviews top AI art generators, discussing their features, suitability for creative projects, and value. It highlights Midjourney as the best value for professionals and recommends DALL-E 2 for high-quality, customizable art.

Getting Started With Meta Llama 3.2 - Analytics Vidhya Getting Started With Meta Llama 3.2 - Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta's Llama 3.2: A Leap Forward in Multimodal and Mobile AI Meta recently unveiled Llama 3.2, a significant advancement in AI featuring powerful vision capabilities and lightweight text models optimized for mobile devices. Building on the success o

Best AI Chatbots Compared (ChatGPT, Gemini, Claude & More) Best AI Chatbots Compared (ChatGPT, Gemini, Claude & More) Apr 02, 2025 pm 06:09 PM

The article compares top AI chatbots like ChatGPT, Gemini, and Claude, focusing on their unique features, customization options, and performance in natural language processing and reliability.

Top AI Writing Assistants to Boost Your Content Creation Top AI Writing Assistants to Boost Your Content Creation Apr 02, 2025 pm 06:11 PM

The article discusses top AI writing assistants like Grammarly, Jasper, Copy.ai, Writesonic, and Rytr, focusing on their unique features for content creation. It argues that Jasper excels in SEO optimization, while AI tools help maintain tone consist

AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More Apr 11, 2025 pm 12:01 PM

This week's AI landscape: A whirlwind of advancements, ethical considerations, and regulatory debates. Major players like OpenAI, Google, Meta, and Microsoft have unleashed a torrent of updates, from groundbreaking new models to crucial shifts in le

Selling AI Strategy To Employees: Shopify CEO's Manifesto Selling AI Strategy To Employees: Shopify CEO's Manifesto Apr 10, 2025 am 11:19 AM

Shopify CEO Tobi Lütke's recent memo boldly declares AI proficiency a fundamental expectation for every employee, marking a significant cultural shift within the company. This isn't a fleeting trend; it's a new operational paradigm integrated into p

10 Generative AI Coding Extensions in VS Code You Must Explore 10 Generative AI Coding Extensions in VS Code You Must Explore Apr 13, 2025 am 01:14 AM

Hey there, Coding ninja! What coding-related tasks do you have planned for the day? Before you dive further into this blog, I want you to think about all your coding-related woes—better list those down. Done? – Let&#8217

Choosing the Best AI Voice Generator: Top Options Reviewed Choosing the Best AI Voice Generator: Top Options Reviewed Apr 02, 2025 pm 06:12 PM

The article reviews top AI voice generators like Google Cloud, Amazon Polly, Microsoft Azure, IBM Watson, and Descript, focusing on their features, voice quality, and suitability for different needs.

See all articles