Table of Contents
Parameter-Efficient Fine-Tuning (PEFT) Techniques
Distributed Interchange Intervention (DII)
ReFT – Representation Finetuning
Experimental Results
Discussion
References
Home Technology peripherals AI Is ReFT All We Needed?

Is ReFT All We Needed?

Feb 25, 2025 pm 07:49 PM

ReFT: A Revolutionary Approach to Fine-tuning LLMs

ReFT (Representation Finetuning), introduced in Stanford's May 2024 paper, offers a groundbreaking method for efficiently fine-tuning large language models (LLMs). Its potential was immediately apparent, further highlighted by Oxen.ai's July 2024 experiment fine-tuning Llama3 (8B) on a single Nvidia A10 GPU in just 14 minutes.

Unlike existing Parameter-Efficient Fine-Tuning (PEFT) methods like LoRA, which modify model weights or input, ReFT leverages the Distributed Interchange Intervention (DII) method. DII projects embeddings into a lower-dimensional subspace, enabling fine-tuning through this subspace.

This article first reviews popular PEFT algorithms (LoRA, Prompt Tuning, Prefix Tuning), then explains DII, before delving into ReFT and its experimental results.

Is ReFT All We Needed?

Parameter-Efficient Fine-Tuning (PEFT) Techniques

Hugging Face provides a comprehensive overview of PEFT techniques. Let's briefly summarize key methods:

LoRA (Low-Rank Adaptation): Introduced in 2021, LoRA's simplicity and generalizability have made it a leading technique for fine-tuning LLMs and diffusion models. Instead of adjusting all layer weights, LoRA adds low-rank matrices, significantly reducing trainable parameters (often less than 0.3%), accelerating training and minimizing GPU memory usage.

Is ReFT All We Needed?

Prompt Tuning: This method uses "soft prompts"—learnable task-specific embeddings—as prefixes, enabling efficient multi-task prediction without duplicating the model for each task.

Is ReFT All We Needed?

Prefix Tuning (P-Tuning v2): Addressing limitations of prompt tuning at scale, Prefix Tuning adds trainable prompt embeddings to various layers, allowing task-specific learning at different levels.

Is ReFT All We Needed?

LoRA's robustness and efficiency make it the most widely used PEFT method for LLMs. A detailed empirical comparison can be found in this paper.

Distributed Interchange Intervention (DII)

DII is rooted in causal abstraction, a framework using intervention between a high-level (causal) model and a low-level (neural network) model to assess alignment. DII projects both models into subspaces via orthogonal projections, creating an intervened model through rotation operations. A detailed visual example is available here.

The DII process can be mathematically represented as:

Is ReFT All We Needed?

where R represents orthogonal projections, and the distributed alignment search (DAS) optimizes the subspace to maximize the probability of expected counterfactual outputs post-intervention.

ReFT – Representation Finetuning

ReFT intervenes in the model's hidden representation within a lower-dimensional space. The illustration below shows the intervention (phi) applied to layer L and position P:

Is ReFT All We Needed?

LoReFT (Low-rank Linear Subspace Reft) introduces a learned projected source:

Is ReFT All We Needed?

where h is the hidden representation, and Rs edits h in the low-dimensional space spanned by R. The LoReFT integration into a neural network layer is shown below:

Is ReFT All We Needed?

During LLM fine-tuning, the LLM parameters remain frozen, and only the projection parameters (phi={R, W, b}) are trained.

Experimental Results

The original ReFT paper presents comparative experiments against full fine-tuning (FT), LoRA, and Prefix Tuning across various benchmarks. ReFT techniques consistently outperform existing methods, reducing parameters by at least 90% while achieving superior performance.

Is ReFT All We Needed?

Discussion

ReFT's appeal stems from its superior performance with Llama-family models across diverse benchmarks and its grounding in causal abstraction, which aids model interpretability. ReFT demonstrates that a linear subspace distributed across neurons can effectively control numerous tasks, offering valuable insights into LLMs.

References

(Note: Please replace the bracketed https://www.php.cn/link/6c11cb78b7bbb5c22d5f5271b5494381 placeholders with the actual links to the research papers.)

The above is the detailed content of Is ReFT All We Needed?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1244
24
Getting Started With Meta Llama 3.2 - Analytics Vidhya Getting Started With Meta Llama 3.2 - Analytics Vidhya Apr 11, 2025 pm 12:04 PM

Meta's Llama 3.2: A Leap Forward in Multimodal and Mobile AI Meta recently unveiled Llama 3.2, a significant advancement in AI featuring powerful vision capabilities and lightweight text models optimized for mobile devices. Building on the success o

10 Generative AI Coding Extensions in VS Code You Must Explore 10 Generative AI Coding Extensions in VS Code You Must Explore Apr 13, 2025 am 01:14 AM

Hey there, Coding ninja! What coding-related tasks do you have planned for the day? Before you dive further into this blog, I want you to think about all your coding-related woes—better list those down. Done? – Let&#8217

AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More AV Bytes: Meta's Llama 3.2, Google's Gemini 1.5, and More Apr 11, 2025 pm 12:01 PM

This week's AI landscape: A whirlwind of advancements, ethical considerations, and regulatory debates. Major players like OpenAI, Google, Meta, and Microsoft have unleashed a torrent of updates, from groundbreaking new models to crucial shifts in le

Selling AI Strategy To Employees: Shopify CEO's Manifesto Selling AI Strategy To Employees: Shopify CEO's Manifesto Apr 10, 2025 am 11:19 AM

Shopify CEO Tobi Lütke's recent memo boldly declares AI proficiency a fundamental expectation for every employee, marking a significant cultural shift within the company. This isn't a fleeting trend; it's a new operational paradigm integrated into p

GPT-4o vs OpenAI o1: Is the New OpenAI Model Worth the Hype? GPT-4o vs OpenAI o1: Is the New OpenAI Model Worth the Hype? Apr 13, 2025 am 10:18 AM

Introduction OpenAI has released its new model based on the much-anticipated “strawberry” architecture. This innovative model, known as o1, enhances reasoning capabilities, allowing it to think through problems mor

A Comprehensive Guide to Vision Language Models (VLMs) A Comprehensive Guide to Vision Language Models (VLMs) Apr 12, 2025 am 11:58 AM

Introduction Imagine walking through an art gallery, surrounded by vivid paintings and sculptures. Now, what if you could ask each piece a question and get a meaningful answer? You might ask, “What story are you telling?

3 Methods to Run Llama 3.2 - Analytics Vidhya 3 Methods to Run Llama 3.2 - Analytics Vidhya Apr 11, 2025 am 11:56 AM

Meta's Llama 3.2: A Multimodal AI Powerhouse Meta's latest multimodal model, Llama 3.2, represents a significant advancement in AI, boasting enhanced language comprehension, improved accuracy, and superior text generation capabilities. Its ability t

Newest Annual Compilation Of The Best Prompt Engineering Techniques Newest Annual Compilation Of The Best Prompt Engineering Techniques Apr 10, 2025 am 11:22 AM

For those of you who might be new to my column, I broadly explore the latest advances in AI across the board, including topics such as embodied AI, AI reasoning, high-tech breakthroughs in AI, prompt engineering, training of AI, fielding of AI, AI re

See all articles