


How Can I Ensure Child Processes Terminate When the Parent Process Ends in C#?
In software development, the behavior of the child process when the parent process is terminated is critical to maintaining the stability of the system. When multiple sub -processes are generated by the parent process, it is important to ensure that they are terminating with the parent process. This article discusses a common problem: the sub -processes generated by the
class are still existed even when the main application collapses or is forced by the task manager.
System.Diagnostics.Process
The object of the operation: the solution to the layer structure of the father and son
In order to build the dependency relationship between the child process and the parent process, the function called "operation object" can be used. The assignment object allows the creation relationship between processes, and the termination of the parent operation object will also lead to the termination of all associated sub -processes.
The following code demonstrates how to use the work object to manage the process dependence:
After creating the process, call the
method to associate it with the established operation objects. Note that the necessary structure definition and the implementation of theusing System; using System.Runtime.InteropServices; using System.Diagnostics; public class Job : IDisposable { [DllImport("kernel32.dll", CharSet = CharSet.Unicode)] static extern IntPtr CreateJobObject(IntPtr a, string lpName); [DllImport("kernel32.dll")] static extern bool SetInformationJobObject(IntPtr hJob, JobObjectInfoType infoType, IntPtr lpJobObjectInfo, uint cbJobObjectInfoLength); [DllImport("kernel32.dll", SetLastError = true)] static extern bool AssignProcessToJobObject(IntPtr job, IntPtr process); private IntPtr _handle; private bool _disposed = false; public Job() { _handle = CreateJobObject(IntPtr.Zero, null); JOBOBJECT_BASIC_LIMIT_INFORMATION info = new JOBOBJECT_BASIC_LIMIT_INFORMATION(); info.LimitFlags = 0x2000; // JOB_OBJECT_LIMIT_KILL_ON_JOB_CLOSE JOBOBJECT_EXTENDED_LIMIT_INFORMATION extendedInfo = new JOBOBJECT_EXTENDED_LIMIT_INFORMATION(); extendedInfo.BasicLimitInformation = info; int length = Marshal.SizeOf(typeof(JOBOBJECT_EXTENDED_LIMIT_INFORMATION)); IntPtr extendedInfoPtr = Marshal.AllocHGlobal(length); Marshal.StructureToPtr(extendedInfo, extendedInfoPtr, false); if (!SetInformationJobObject(_handle, JobObjectInfoType.ExtendedLimitInformation, extendedInfoPtr, (uint)length)) throw new Exception($"无法设置信息。错误:{Marshal.GetLastWin32Error()}"); Marshal.FreeHGlobal(extendedInfoPtr); } public void AddProcess(Process process) { if (!AssignProcessToJobObject(_handle, process.Handle)) throw new Exception($"无法将进程分配到作业对象。错误:{Marshal.GetLastWin32Error()}"); } public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } protected virtual void Dispose(bool disposing) { if (_disposed) return; if (disposing) { } Close(); _disposed = true; } public void Close() { if (_handle != IntPtr.Zero) { Win32.CloseHandle(_handle); _handle = IntPtr.Zero; } } } internal static class Win32 { [DllImport("kernel32.dll")] internal static extern bool CloseHandle(IntPtr hObject); } // 必要的结构体定义 (根据需要补充完整) enum JobObjectInfoType { ExtendedLimitInformation = 9 } [StructLayout(LayoutKind.Sequential)] internal struct IO_COUNTERS { public UInt64 ReadOperationCount; public UInt64 WriteOperationCount; public UInt64 OtherOperationCount; public UInt64 ReadTransferCount; public UInt64 WriteTransferCount; public UInt64 OtherTransferCount; } [StructLayout(LayoutKind.Sequential)] internal struct JOBOBJECT_BASIC_LIMIT_INFORMATION { public Int64 PerProcessUserTimeLimit; public Int64 PerJobUserTimeLimit; public UInt32 LimitFlags; public UIntPtr MinimumWorkingSetSize; public UIntPtr MaximumWorkingSetSize; public UInt32 ActiveProcessLimit; public UInt32 Affinity; public UInt32 PriorityClass; public UInt32 SchedulingClass; } [StructLayout(LayoutKind.Sequential)] internal struct JOBOBJECT_EXTENDED_LIMIT_INFORMATION { public JOBOBJECT_BASIC_LIMIT_INFORMATION BasicLimitInformation; public IO_COUNTERS IoInfo; public UInt64 ProcessMemoryLimit; public UInt64 JobMemoryLimit; public UInt64 PeakProcessMemoryUsed; public UInt64 PeakJobMemoryUsed; }
The above is the detailed content of How Can I Ensure Child Processes Terminate When the Parent Process Ends in C#?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.
