Home Backend Development Golang Building a Real-time Collaboration Platform with Go and WebSockets

Building a Real-time Collaboration Platform with Go and WebSockets

Jan 05, 2025 pm 09:25 PM

Building a Real-time Collaboration Platform with Go and WebSockets

Introduction

Let's build a distributed real-time collaboration platform that enables multiple users to work together simultaneously. This project will demonstrate WebSocket handling, conflict resolution, and state synchronization in Go.

Project Overview: Real-time Collaboration Platform

Core Features

  • Real-time document editing
  • Cursor position synchronization
  • Presence awareness
  • Operational transformation
  • Conflict resolution
  • Chat functionality

Technical Implementation

1. WebSocket Server

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

// WebSocket server implementation

type CollaborationServer struct {

    sessions    map[string]*Session

    documents   map[string]*Document

    broadcast   chan Message

    register    chan *Client

    unregister  chan *Client

}

 

type Client struct {

    id       string

    session  *Session

    conn     *websocket.Conn

    send     chan Message

}

 

type Message struct {

    Type    MessageType `json:"type"`

    Payload interface{} `json:"payload"`

}

 

func NewCollaborationServer() *CollaborationServer {

    return &CollaborationServer{

        sessions:   make(map[string]*Session),

        documents:  make(map[string]*Document),

        broadcast:  make(chan Message),

        register:   make(chan *Client),

        unregister: make(chan *Client),

    }

}

 

func (s *CollaborationServer) Run() {

    for {

        select {

        case client := <-s.register:

            s.handleRegister(client)

 

        case client := <-s.unregister:

            s.handleUnregister(client)

 

        case message := <-s.broadcast:

            s.handleBroadcast(message)

        }

    }

}

 

func (s *CollaborationServer) handleRegister(client *Client) {

    session := s.sessions[client.session.ID]

    if session == nil {

        session = &Session{

            ID:      client.session.ID,

            Clients: make(map[string]*Client),

        }

        s.sessions[session.ID] = session

    }

    session.Clients[client.id] = client

}

Copy after login

2. Operational Transformation Engine

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

// Operational transformation implementation

type Operation struct {

    Type      OperationType

    Position  int

    Content   string

    ClientID  string

    Revision  int

}

 

type Document struct {

    ID        string

    Content   string

    History   []Operation

    Revision  int

    mu        sync.RWMutex

}

 

func (d *Document) ApplyOperation(op Operation) error {

    d.mu.Lock()

    defer d.mu.Unlock()

 

    // Transform operation against concurrent operations

    transformedOp := d.transformOperation(op)

 

    // Apply the transformed operation

    switch transformedOp.Type {

    case OpInsert:

        d.insertContent(transformedOp.Position, transformedOp.Content)

    case OpDelete:

        d.deleteContent(transformedOp.Position, len(transformedOp.Content))

    }

 

    // Update revision and history

    d.Revision++

    d.History = append(d.History, transformedOp)

 

    return nil

}

 

func (d *Document) transformOperation(op Operation) Operation {

    transformed := op

 

    // Transform against all concurrent operations

    for _, historical := range d.History[op.Revision:] {

        transformed = transform(transformed, historical)

    }

 

    return transformed

}

Copy after login

3. Presence System

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

// Real-time presence tracking

type PresenceSystem struct {

    mu       sync.RWMutex

    users    map[string]*UserPresence

    updates  chan PresenceUpdate

}

 

type UserPresence struct {

    UserID    string

    Document  string

    Cursor    Position

    Selection Selection

    LastSeen  time.Time

}

 

type Position struct {

    Line   int

    Column int

}

 

type Selection struct {

    Start Position

    End   Position

}

 

func (ps *PresenceSystem) UpdatePresence(update PresenceUpdate) {

    ps.mu.Lock()

    defer ps.mu.Unlock()

 

    user := ps.users[update.UserID]

    if user == nil {

        user = &UserPresence{UserID: update.UserID}

        ps.users[update.UserID] = user

    }

 

    user.Document = update.Document

    user.Cursor = update.Cursor

    user.Selection = update.Selection

    user.LastSeen = time.Now()

 

    // Broadcast update to other users

    ps.updates <- update

}

 

func (ps *PresenceSystem) StartCleanup() {

    ticker := time.NewTicker(30 * time.Second)

    go func() {

        for range ticker.C {

            ps.cleanupInactiveUsers()

        }

    }()

}

Copy after login

4. Conflict Resolution

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

// Conflict resolution system

type ConflictResolver struct {

    strategy ConflictStrategy

}

 

type ConflictStrategy interface {

    Resolve(a, b Operation) Operation

}

 

// Last-write-wins strategy

type LastWriteWinsStrategy struct{}

 

func (s *LastWriteWinsStrategy) Resolve(a, b Operation) Operation {

    if a.Timestamp.After(b.Timestamp) {

        return a

    }

    return b

}

 

// Three-way merge strategy

type ThreeWayMergeStrategy struct{}

 

func (s *ThreeWayMergeStrategy) Resolve(base, a, b Operation) Operation {

    // Implement three-way merge logic

    if a.Position == b.Position {

        if a.Type == OpDelete && b.Type == OpDelete {

            return a // Both deleted same content

        }

        if a.Timestamp.After(b.Timestamp) {

            return a

        }

        return b

    }

 

    // Non-overlapping changes

    if a.Position < b.Position {

        return combineOperations(a, b)

    }

    return combineOperations(b, a)

}

Copy after login

5. State Synchronization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

// State synchronization system

type SyncManager struct {

    documents map[string]*DocumentState

    clients   map[string]*ClientState

}

 

type DocumentState struct {

    Content    string

    Version    int64

    Operations []Operation

    Checksum   string

}

 

type ClientState struct {

    LastSync    time.Time

    SyncVersion int64

}

 

func (sm *SyncManager) SynchronizeState(clientID string, docID string) error {

    client := sm.clients[clientID]

    doc := sm.documents[docID]

 

    if client.SyncVersion == doc.Version {

        return nil // Already in sync

    }

 

    // Get operations since last sync

    ops := sm.getOperationsSince(docID, client.SyncVersion)

 

    // Apply operations to client state

    for _, op := range ops {

        if err := sm.applyOperation(clientID, op); err != nil {

            return fmt.Errorf("sync failed: %w", err)

        }

    }

 

    // Update client sync version

    client.SyncVersion = doc.Version

    client.LastSync = time.Now()

 

    return nil

}

Copy after login

6. Chat System

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

// Real-time chat implementation

type ChatSystem struct {

    rooms    map[string]*ChatRoom

    history  map[string][]ChatMessage

}

 

type ChatRoom struct {

    ID        string

    Members   map[string]*Client

    Messages  chan ChatMessage

}

 

type ChatMessage struct {

    ID        string

    RoomID    string

    UserID    string

    Content   string

    Timestamp time.Time

}

 

func (cs *ChatSystem) SendMessage(msg ChatMessage) error {

    room := cs.rooms[msg.RoomID]

    if room == nil {

        return fmt.Errorf("room not found: %s", msg.RoomID)

    }

 

    // Store message in history

    cs.history[msg.RoomID] = append(cs.history[msg.RoomID], msg)

 

    // Broadcast to room members

    room.Messages <- msg

 

    return nil

}

Copy after login

Advanced Features

1. Performance Optimization

  • Message batching
  • Operation compression
  • Selective broadcasting

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

// Message batching implementation

type MessageBatcher struct {

    messages []Message

    timeout  time.Duration

    size     int

    batch    chan []Message

}

 

func (mb *MessageBatcher) Add(msg Message) {

    mb.messages = append(mb.messages, msg)

 

    if len(mb.messages) >= mb.size {

        mb.flush()

    }

}

 

func (mb *MessageBatcher) Start() {

    ticker := time.NewTicker(mb.timeout)

    go func() {

        for range ticker.C {

            mb.flush()

        }

    }()

}

Copy after login

2. Scaling Considerations

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// Distributed coordination using Redis

type DistributedCoordinator struct {

    client  *redis.Client

    pubsub  *redis.PubSub

}

 

func (dc *DistributedCoordinator) PublishUpdate(update Update) error {

    return dc.client.Publish(ctx, "updates", update).Err()

}

 

func (dc *DistributedCoordinator) SubscribeToUpdates() {

    sub := dc.client.Subscribe(ctx, "updates")

    for msg := range sub.Channel() {

        // Handle distributed update

        dc.handleUpdate(msg)

    }

}

Copy after login

Testing Strategy

1. Unit Tests

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

func TestOperationalTransformation(t *testing.T) {

    doc := NewDocument("test")

 

    // Test concurrent inserts

    op1 := Operation{Type: OpInsert, Position: 0, Content: "Hello"}

    op2 := Operation{Type: OpInsert, Position: 0, Content: "World"}

 

    doc.ApplyOperation(op1)

    doc.ApplyOperation(op2)

 

    expected := "WorldHello"

    if doc.Content != expected {

        t.Errorf("expected %s, got %s", expected, doc.Content)

    }

}

Copy after login

2. Integration Tests

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

func TestRealTimeCollaboration(t *testing.T) {

    server := NewCollaborationServer()

    go server.Run()

 

    // Create test clients

    client1 := createTestClient()

    client2 := createTestClient()

 

    // Simulate concurrent editing

    go simulateEditing(client1)

    go simulateEditing(client2)

 

    // Verify final state

    time.Sleep(2 * time.Second)

    verifyDocumentState(t, server)

}

Copy after login

Deployment Architecture

  • Multiple server instances behind a load balancer
  • Redis for pub/sub and state coordination
  • WebSocket connection management
  • Monitoring and alerting

Conclusion

Building a real-time collaboration platform demonstrates complex distributed systems concepts and real-time data synchronization. The project showcases Go's strong concurrency features and WebSocket handling capabilities.

Additional Resources

  • WebSocket Protocol RFC
  • Operational Transformation
  • Redis Pub/Sub Documentation

Share your experiences building real-time collaboration systems in the comments below!


Tags: #golang #websockets #realtime #collaboration #distributed-systems

The above is the detailed content of Building a Real-time Collaboration Platform with Go and WebSockets. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1657
14
PHP Tutorial
1257
29
C# Tutorial
1230
24
Golang's Purpose: Building Efficient and Scalable Systems Golang's Purpose: Building Efficient and Scalable Systems Apr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

See all articles