Home Backend Development Golang Counting the number of Tokens sent to a LLM in Go (part 1)

Counting the number of Tokens sent to a LLM in Go (part 1)

Jan 02, 2025 pm 02:18 PM

Counting the number of Tokens sent to a LLM in Go (part 1)

Introduction

A few weeks ago, I was having a discussion with a CFO from a business partner company, regarding the implementation of watsonx.ai capacities inside their own solution. During the discussion about the costs I pronounced the word “token” and all of a sudden there was panic ?

After explaining what tokens are, there came the question; “How do I count the tokens we send and receive? How much does it cost us?”

The answer was quite easy. We went to watsonx.ai studio prompt lab, went back and forth with some simple prompts and there we saw the number of tokens. I also showed the person some very nice websites where we can find how many tokens we send to a LLM by using simple inputs.

Later on I said to myself, why don’t I make my own token counter application (and my intention is write it in Go language as there’s a long time I didn’t use Golang!). Well I figured it’s a bit more complicated than that ?

First attempt — Using Regex

My first thought was using Regex, I could obtain more or less some acceptable results.

I set up the following Go app.

package main

import (
    "bufio"
    "fmt"
    "log"
    "os"
    "regexp"
    "strings"

    "github.com/sqweek/dialog"
)

// countTokens approximates the number of tokens in a text based on whitespace and punctuation.
func countTokens(text string) int {
    // A simple regex to split text into words and punctuation
    tokenizer := regexp.MustCompile(`\w+|[^\w\s]`)
    tokens := tokenizer.FindAllString(text, -1)
    return len(tokens)
}

func main() {

    // Open a file dialog box and let the user select a text file
    filePath, err := dialog.File().Filter("Text Files", "txt").Load()
    if err != nil {
        if err.Error() == "Cancelled" {
            fmt.Println("File selection was cancelled.")
            return
        }
        log.Fatalf("Error selecting file: %v", err)
    }

    // Output the selected file name
    fmt.Printf("Selected file: %s\n", filePath)

    // Specify the file to read
    //filePath := "input.txt"

    // Open the file
    file, err := os.Open(filePath)
    if err != nil {
        fmt.Printf("Error opening file: %v\n", err)
        return
    }
    defer file.Close()

    // Read the file line by line
    var content strings.Builder
    scanner := bufio.NewScanner(file)
    for scanner.Scan() {
        content.WriteString(scanner.Text())
        content.WriteString("\n")
    }

    if err := scanner.Err(); err != nil {
        fmt.Printf("Error reading file: %v\n", err)
        return
    }

    // Get the text content
    text := content.String()

    // Count the tokens
    tokenCount := countTokens(text)

    // Output the result
    fmt.Printf("The file contains approximately %d tokens.\n", tokenCount)
}

Copy after login

You’ll figure out that I’m a fan of GUI and dialog boxes, so I implemented a dialog box to select the input text file.

And here is the text file (some random text I found ?).

The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages.
We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations.
We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
Copy after login

After running my code I get the following output;

The file contains approximately 359 tokens.
Copy after login

It seems fine, but, well… okay, but… against which model ?? And also there are different ways to implement Regex, so this one does not count at all ?!

Second attempt — running against a specific model

What I figured out was that unless we don’t use the specific “tokenizer” for a given LLM, the former method is not accurate. So I began to look at how to obtain some accurate results against a model such as gpt 3.5 which is on the market for a while now. After doing some research on the net, hereafter the app I came up with.

package main

import (
 "bufio"
 "bytes"
 "fmt"
 "log"
 "os"
 "os/exec"

 "github.com/joho/godotenv"
 "github.com/sqweek/dialog"
)

func main() {


 // Open a file dialog box and let the user select a text file
 filePath, err := dialog.File().Filter("Text Files", "txt").Load()
 if err != nil {
  if err.Error() == "Cancelled" {
   fmt.Println("File selection was cancelled.")
   return
  }
  log.Fatalf("Error selecting file: %v", err)
 }

 // Output the selected file name
 fmt.Printf("Selected file: %s\n", filePath)

 // Open the file
 file, err := os.Open(filePath)
 if err != nil {
  fmt.Printf("Error opening file: %v\n", err)
  return
 }
 defer file.Close()

 // Read the file content
 var content bytes.Buffer
 scanner := bufio.NewScanner(file)
 for scanner.Scan() {
  content.WriteString(scanner.Text())
  content.WriteString("\n")
 }

 if err := scanner.Err(); err != nil {
  fmt.Printf("Error reading file: %v\n", err)
  return
 }

 // Specify the model
 model := "gpt-3.5-turbo"

 // Execute the Python script
 cmd := exec.Command("python3", "tokenizer.py", model)
 cmd.Stdin = bytes.NewReader(content.Bytes())
 output, err := cmd.Output()
 if err != nil {
  fmt.Printf("Error running tokenizer script: %v\n", err)
  return
 }

 // Print the token count
 fmt.Printf("Token count: %s", output)
}
Copy after login

As we can see in the code above, there is a call to a Python app which I found on a Microsoft site which helps (because it has been implemented) a “tiktoken” library to determine the number of tokens for gpt! Also the model name is hard coded.

import sys
from tiktoken import encoding_for_model

def count_tokens(model, text):
    enc = encoding_for_model(model)
    tokens = enc.encode(text)
    return len(tokens)

if __name__ == "__main__":
    # Read model name and text from stdin
    model = sys.argv[1]  # E.g., "gpt-3.5-turbo"
    text = sys.stdin.read()
    print(count_tokens(model, text))
Copy after login

This works fine. For the same text given earlier, now I obtain the count of 366 tokens which is accurate, regarding all the websites I found and on which I set the model to GPT 3.5.

The thing is I want to write is, a code fully in “Golang”… and I want to be able to run it for all models (or almost all) I can find on Huggingface (such as ibm-granite/granite-3.1–8b-instruct) ?

This would be the part 2 of this article (WIP).

So far I’m exploring the following (great ?) Github repos;

  • Tokenizer: https://github.com/sugarme/tokenizer
  • tokenizers: https://github.com/daulet/tokenizers
  • And last but not least -> go-huggingface: https://github.com/gomlx/go-huggingface?tab=readme-ov-file

Conclusion

Thanks for reading and open to comments.

And till the 2nd app is out, stay tuned… ?

The above is the detailed content of Counting the number of Tokens sent to a LLM in Go (part 1). For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Golang's Purpose: Building Efficient and Scalable Systems Golang's Purpose: Building Efficient and Scalable Systems Apr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

See all articles