Integers in C: A Bit of History
Integers are the most fundamental data structure in computing—if we can even call them a "structure." Our job as programmers is to give meaning to these numbers. No matter how complex the software: in the end, it’s just an integer, and your processor only understands integers.
If we need negative numbers, we invented two's complement. If we need fractional numbers, we create a sort of scientific notation and — boom — we have a float. At the end of the day, there's no escaping from zeros and ones.
Little History of Integers
In C, the int is almost the natural type. Although compilers might complain, with a few flags here and there, most will allow you to write something like this:
main(void) { return 0; }
Technically, this is the same as:
int main(void) { return 0; }
This behavior comes from a time when it was common sense to assume that, if the programmer didn’t specify a type, it was reasonable to default to an integer.
C was designed with this idea in mind. Initially, int didn’t have a standard size. The PDP-11 processor — the machine for which C was originally created — used 16-bit addressing. So it was assumed that it made sense for an int to also be 16 bits. The idea was that the size of int would grow as processors evolved.
The Mysterious Size
This approach created some problems. If the size of int varies between platforms, programs compiled for different processors could behave differently. This broke the idea of C being an "agnostic" language that compiles to diverse architectures.
Unlike int, the char, for example, always had a well-defined size: 8 bits, signed. Despite its name, char is not an abstract type for text characters; it’s just an 8-bit number. For example, the literal 'a' is converted at compile time to the number 97, plain and simple.
And what about other types, like short and long? The idea was straightforward:
short <= int <= long
Compiler implementers had complete freedom to decide the specific sizes.
ANSI C (1989) Brings Some Order
With the ANSI C standard, some rules were established:
- char: at least 8 bits
- short: at least 16 bits
- int: the size of a short or larger (16 or 32 bits)
- long: at least 32 bits
This organization helped, but the size of int remained confusing, to say the least. Things improved with the C99 standard, which introduced the stdint.h header.
Now we have fixed-size types:
- int8_t: 8 bits
- int16_t: 16 bits
- int32_t: 32 bits
- int64_t: 64 bits
From then on, it was up to the compiler to implement this header with fixed-size types.
The Current State of Integers
Today, with modern compilers like GCC and Clang, sizes are more predictable:
Type | Size |
---|---|
char | 8 bits |
short | 16 bits |
int | 32 bits |
long | 64 bits (32 bits on 32-bit systems) |
long long | 64 bits |
Although long long is still somewhat peculiar, at least it brings some consistency (I even find long long stylish, to be honest).
What to Do?
Today, we are well-equipped with headers like stddef.h and stdint.h. Use int only where necessary, like for the return type of the main function. For anything beyond prototyping, prefer using fixed-size integers from stdint.h, and for array indices or loops, use size_t from stddef.h. I hope this spares you some headaches down the road.
Thanks for making it this far — see you next time!
The above is the detailed content of Integers in C: A Bit of History. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.
