


How to Pivot Multiple Columns in SQL Server for Optimal Data Presentation?
Pivoting Multiple Columns in SQL Server for Optimal Data Presentation
When working with relational databases, pivoting tables can be an effective way to reshape data for easier analysis and visualization. In SQL Server, this technique can be particularly useful when dealing with tables that have multiple columns you want to display as rows.
Problem Statement:
Consider the following sample table:
Branch | Category | Sales | Stock | Target ------- | ******** | ----- | ----- | ------- Branch1 | Panel | 100 | 200 | 300 Branch1 | AC | 150 | 250 | 350 Branch1 | Ref | 200 | 300 | 400
The goal is to pivot the Category column and display the Sales, Stock, and Target columns as rows, yielding the following output:
Branch | Panel | AC | Ref | ------- | ------ | -- | ---- | Branch1 | 100 | 150 | 200 |
Solution:
To achieve the desired output, we can employ a series of pivot statements in SQL Server. The key is to rename the columns in the intermediate pivot results to prepare for the subsequent pivot operation.
Consider the following code:
SELECT * FROM ( SELECT Branch, Category, Category+'1' As Category1, Category+'2' As Category2, Sales, Stock, Target FROM TblPivot ) AS P -- For Sales PIVOT ( SUM(Sales) FOR Category IN ([Panel], [AC], [Ref]) ) AS pv1 -- For Stock PIVOT ( SUM(Stock) FOR Category1 IN ([Panel1], [AC1], [Ref1]) ) AS pv2 -- For Target PIVOT ( SUM(Target) FOR Category2 IN ([Panel2], [AC2], [Ref2]) ) AS pv3 GO
This code executes the following steps:
- Prepare the Data: It renames the Category column and adds two additional columns, Category1 and Category2, to facilitate the subsequent pivots.
- Pivot for Sales: The first pivot statement creates the pv1 table, which sums the sales for each category.
- Pivot for Stock: The second pivot statement creates the pv2 table, which sums the stock for each category.
- Pivot for Target: The third pivot statement creates the pv3 table, which sums the target for each category.
The resulting pv3 table contains the desired output, with the categories as rows and the columns representing the sales, stock, and target values.
The above is the detailed content of How to Pivot Multiple Columns in SQL Server for Optimal Data Presentation?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.
