


How Can I Create a General-Purpose FromEvent Method for TaskCompletionSource in C#?
General Purpose FromEvent Method
Problem:
Creating a TaskCompletionSource that completes when an event fires requires a custom FromEvent method for each event in each class. This becomes cumbersome and repetitive.
Desired Solution:
A general purpose FromEvent method that can handle any event on any instance.
Difficulties:
- Events can only be attached to the left-hand side of an expression.
- Delegate types and parameters for events need to be dynamically determined.
- Emitting IL code to access external instances and set TaskCompletionSource results is challenging.
Solution:
The following code provides a general purpose FromEvent method that overcomes these difficulties:
internal class TaskCompletionSourceHolder { private readonly TaskCompletionSource<object[]> m_tcs; internal object Target { get; set; } internal EventInfo EventInfo { get; set; } internal Delegate Delegate { get; set; } internal TaskCompletionSourceHolder(TaskCompletionSource<object[]> tsc) { m_tcs = tsc; } private void SetResult(params object[] args) { // this method will be called from emitted IL // so we can set result here, unsubscribe from the event // or do whatever we want. // object[] args will contain arguments // passed to the event handler m_tcs.SetResult(args); EventInfo.RemoveEventHandler(Target, Delegate); } } public static class ExtensionMethods { private static Dictionary<Type, DynamicMethod> s_emittedHandlers = new Dictionary<Type, DynamicMethod>(); private static void GetDelegateParameterAndReturnTypes(Type delegateType, out List<Type> parameterTypes, out Type returnType) { if (delegateType.BaseType != typeof(MulticastDelegate)) throw new ArgumentException("delegateType is not a delegate"); MethodInfo invoke = delegateType.GetMethod("Invoke"); if (invoke == null) throw new ArgumentException("delegateType is not a delegate."); ParameterInfo[] parameters = invoke.GetParameters(); parameterTypes = new List<Type>(parameters.Length); for (int i = 0; i < parameters.Length; i++) parameterTypes.Add(parameters[i].ParameterType); returnType = invoke.ReturnType; } public static Task<object[]> FromEvent<T>(this T obj, string eventName) { var tcs = new TaskCompletionSource<object[]>(); var tcsh = new TaskCompletionSourceHolder(tcs); EventInfo eventInfo = obj.GetType().GetEvent(eventName); Type eventDelegateType = eventInfo.EventHandlerType; DynamicMethod handler; if (!s_emittedHandlers.TryGetValue(eventDelegateType, out handler)) { Type returnType; List<Type> parameterTypes; GetDelegateParameterAndReturnTypes(eventDelegateType, out parameterTypes, out returnType); if (returnType != typeof(void)) throw new NotSupportedException(); Type tcshType = tcsh.GetType(); MethodInfo setResultMethodInfo = tcshType.GetMethod( "SetResult", BindingFlags.NonPublic | BindingFlags.Instance); // I'm going to create an instance-like method // so, first argument must an instance itself // i.e. TaskCompletionSourceHolder *this* parameterTypes.Insert(0, tcshType); Type[] parameterTypesAr = parameterTypes.ToArray(); handler = new DynamicMethod("unnamed", returnType, parameterTypesAr, tcshType); ILGenerator ilgen = handler.GetILGenerator(); // declare local variable of type object[] LocalBuilder arr = ilgen.DeclareLocal(typeof(object[])); // push array's size onto the stack ilgen.Emit(OpCodes.Ldc_I4, parameterTypesAr.Length - 1); // create an object array of the given size ilgen.Emit(OpCodes.Newarr, typeof(object)); // and store it in the local variable ilgen.Emit(OpCodes.Stloc, arr); // iterate thru all arguments except the zero one (i.e. *this*) // and store them to the array for (int i = 1; i < parameterTypesAr.Length; i++) { // push the array onto the stack ilgen.Emit(OpCodes.Ldloc, arr); // push the argument's index onto the stack ilgen.Emit(OpCodes.Ldc_I4, i - 1); // push the argument onto the stack ilgen.Emit(OpCodes.Ldarg, i); // check if it is of a value type // and perform boxing if necessary if (parameterTypesAr[i].IsValueType) ilgen.Emit(OpCodes.Box, parameterTypesAr[i]); // store the value to the argument's array ilgen.Emit(OpCodes.Stelem, typeof(object)); } // load zero-argument (i.e. *this*) onto the stack ilgen.Emit(OpCodes.Ldarg_0); // load the array onto the stack ilgen.Emit(OpCodes.Ldloc, arr); // call this.SetResult(arr); ilgen.Emit(OpCodes.Call, setResultMethodInfo); // and return ilgen.Emit(OpCodes.Ret); s_emittedHandlers.Add(eventDelegateType, handler); } Delegate dEmitted = handler.CreateDelegate(eventDelegateType, tcsh); tcsh.Target = obj; tcsh.EventInfo = eventInfo; tcsh.Delegate = dEmitted; eventInfo.AddEventHandler(obj, dEmitted); return tcs.Task; } }
Advantages of This Solution:
- Supports any kind of delegate type, eliminating the need to specify specific types.
- Emits IL code at runtime to handle delegate invocation and TaskCompletionSource result setting, providing flexibility and performance.
The above is the detailed content of How Can I Create a General-Purpose FromEvent Method for TaskCompletionSource in C#?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.

C isnotdying;it'sevolving.1)C remainsrelevantduetoitsversatilityandefficiencyinperformance-criticalapplications.2)Thelanguageiscontinuouslyupdated,withC 20introducingfeatureslikemodulesandcoroutinestoimproveusabilityandperformance.3)Despitechallen
