Home Web Front-end JS Tutorial Benchmarking in Node.js vs Deno: A Comprehensive Comparison

Benchmarking in Node.js vs Deno: A Comprehensive Comparison

Dec 12, 2024 pm 04:18 PM

In the ever-evolving landscape of JavaScript runtime environments, Node.js and Deno stand out as powerful platforms for building server-side applications. While both share similarities, their approaches to performance measurement and benchmarking differ significantly. Let's dive deep into the benchmarking capabilities of these two runtimes.

The Need for Benchmarking

Performance matters. Whether you're building a high-traffic web service, a complex backend application, or just exploring the limits of your code, understanding how different implementations perform is crucial. Benchmarking helps developers:

  • Identify performance bottlenecks
  • Compare different implementation strategies
  • Make informed architectural decisions
  • Optimize critical code paths

Node.js: Custom Benchmarking Solution

In Node.js, there's no built-in benchmarking framework, which leads developers to create custom solutions. The provided example demonstrates a sophisticated approach to benchmarking:

bench.js

class Benchmark {
  constructor(name, fn, options = {}) {
    this.name = name;
    this.fn = fn;
    this.options = options;
    this.results = [];
  }

  async run() {
    const { async = false, iterations = 1000 } = this.options;
    const results = [];

    // Warmup
    for (let i = 0; i < 10; i++) {
      async ? await this.fn() : this.fn();
    }

    // Main benchmark
    for (let i = 0; i < iterations; i++) {
      const start = process.hrtime.bigint();
      async ? await this.fn() : this.fn();
      const end = process.hrtime.bigint();
      results.push(Number(end - start)); // Nanoseconds
    }

    // Sort results to calculate metrics
    results.sort((a, b) => a - b);
    this.results = {
      avg: results.reduce((sum, time) => sum + time, 0) / iterations,
      min: results[0],
      max: results[results.length - 1],
      p75: results[Math.ceil(iterations * 0.75) - 1],
      p99: results[Math.ceil(iterations * 0.99) - 1],
      p995: results[Math.ceil(iterations * 0.995) - 1],
      iterPerSec: Math.round(
        1e9 / (results.reduce((sum, time) => sum + time, 0) / iterations)
      ),
    };
  }

  getReportObject() {
    const { avg, min, max, p75, p99, p995, iterPerSec } = this.results;
    return {
      Benchmark: this.name,
      "time/iter (avg)": `${(avg / 1e3).toFixed(1)} ns`,
      "iter/s": iterPerSec,
      "(min … max)": `${(min / 1e3).toFixed(1)} ns … ${(max / 1e3).toFixed(
        1
      )} ns`,
      p75: `${(p75 / 1e3).toFixed(1)} ns`,
      p99: `${(p99 / 1e3).toFixed(1)} ns`,
      p995: `${(p995 / 1e3).toFixed(1)} ns`,
    };
  }
}

class BenchmarkSuite {
  constructor() {
    this.benchmarks = [];
  }

  add(name, fn, options = {}) {
    const benchmark = new Benchmark(name, fn, options);
    this.benchmarks.push(benchmark);
  }

  async run() {
    const reports = [];

    for (const benchmark of this.benchmarks) {
      await benchmark.run();
      reports.push(benchmark.getReportObject());
    }

    console.log(`\nBenchmark Results:\n`);
    console.table(reports);

    // Optionally, add summaries for grouped benchmarks
    this.printSummary();
  }

  printSummary() {
    const groups = this.benchmarks.reduce((acc, benchmark) => {
      const group = benchmark.options.group;
      if (group) {
        if (!acc[group]) acc[group] = [];
        acc[group].push(benchmark);
      }
      return acc;
    }, {});

    for (const [group, benchmarks] of Object.entries(groups)) {
      console.log(`\nGroup Summary: ${group}`);
      const baseline = benchmarks.find((b) => b.options.baseline);
      if (baseline) {
        for (const benchmark of benchmarks) {
          if (benchmark !== baseline) {
            const factor = (
              baseline.results.avg / benchmark.results.avg
            ).toFixed(2);
            console.log(
              `  ${baseline.name} is ${factor}x faster than ${benchmark.name}`
            );
          }
        }
      }
    }
  }
}

const suite = new BenchmarkSuite();

// Add benchmarks
suite.add("URL parsing", () => new URL("https://nodejs.org"));
suite.add(
  "Async method",
  async () => await crypto.subtle.digest("SHA-256", new Uint8Array([1, 2, 3])),
  { async: true }
);
suite.add("Long form", () => new URL("https://nodejs.org"));
suite.add("Date.now()", () => Date.now(), { group: "timing", baseline: true });
suite.add("performance.now()", () => performance.now(), { group: "timing" });

// Run benchmarks
suite.run();
Copy after login
node bench.js
Copy after login

Benchmarking in Node.js vs Deno: A Comprehensive Comparison

Key Features of Node.js Benchmarking Approach:

  • Completely custom implementation
  • Detailed performance metrics
  • Support for both sync and async functions
  • Warmup phase to mitigate initial performance variations
  • Comprehensive statistical analysis (avg, min, max, percentiles)
  • Group-based comparisons
  • Manual iteration and result collection

Deno: Built-in Benchmarking

Deno takes a different approach with its built-in Deno.bench() method:

bench.ts

Deno.bench("URL parsing", () => {
  new URL("https://deno.land");
});
Deno.bench("Async method", async () => {
  await crypto.subtle.digest("SHA-256", new Uint8Array([1, 2, 3]));
});
Deno.bench({
  name: "Long form",
  fn: () => {
    new URL("https://deno.land");
  },
});
Deno.bench({
  name: "Date.now()",
  group: "timing",
  baseline: true,
  fn: () => {
    Date.now();
  },
});

Deno.bench({
  name: "performance.now()",
  group: "timing",
  fn: () => {
    performance.now();
  },
});
Copy after login
deno bench bench.ts
Copy after login

Benchmarking in Node.js vs Deno: A Comprehensive Comparison

Advantages of Deno's Approach:

  • Native support
  • Simpler syntax
  • Integrated with Deno's testing framework
  • Less boilerplate code
  • Automatically handles iteration and reporting

Comparative Analysis

Pros of Node.js Custom Benchmarking:

  • Extreme flexibility
  • Detailed control over benchmark process
  • Ability to add custom metrics
  • Works across different Node.js versions
  • Can be extended for complex scenarios

Pros of Deno Built-in Benchmarking:

  • Simplicity
  • Native integration
  • Less code to maintain
  • Standardized approach
  • Automatic optimization and reporting

When to Use Each Approach

Use Node.js Custom Benchmarking When:

  • You need extremely detailed performance insights
  • Your benchmarks have complex requirements
  • You want full control over the measurement process
  • Working with older Node.js versions

Use Deno Benchmarking When:

  • You want a quick, straightforward performance check
  • Using the latest Deno runtime
  • Need minimal setup
  • Prefer built-in, standardized tools

Performance Considerations

Both approaches use high-resolution timing methods:

  • Node.js: process.hrtime.bigint()
  • Deno: Internal high-resolution timer

The key difference lies in the level of detail and manual intervention required.

Conclusion

While Node.js requires developers to build their own comprehensive benchmarking solutions, Deno provides a batteries-included approach. Your choice depends on your specific needs, project complexity, and personal preference.

The future of JavaScript runtimes is exciting, with both Node.js and Deno pushing the boundaries of performance measurement and optimization.

Pro Tips

  • Always run benchmarks multiple times
  • Consider external factors like system load
  • Use percentile metrics for more robust performance evaluation
  • Don't optimize prematurely

Happy benchmarking! ??

The above is the detailed content of Benchmarking in Node.js vs Deno: A Comprehensive Comparison. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1655
14
PHP Tutorial
1252
29
C# Tutorial
1226
24
What should I do if I encounter garbled code printing for front-end thermal paper receipts? What should I do if I encounter garbled code printing for front-end thermal paper receipts? Apr 04, 2025 pm 02:42 PM

Frequently Asked Questions and Solutions for Front-end Thermal Paper Ticket Printing In Front-end Development, Ticket Printing is a common requirement. However, many developers are implementing...

Demystifying JavaScript: What It Does and Why It Matters Demystifying JavaScript: What It Does and Why It Matters Apr 09, 2025 am 12:07 AM

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

Who gets paid more Python or JavaScript? Who gets paid more Python or JavaScript? Apr 04, 2025 am 12:09 AM

There is no absolute salary for Python and JavaScript developers, depending on skills and industry needs. 1. Python may be paid more in data science and machine learning. 2. JavaScript has great demand in front-end and full-stack development, and its salary is also considerable. 3. Influencing factors include experience, geographical location, company size and specific skills.

How to achieve parallax scrolling and element animation effects, like Shiseido's official website?
or:
How can we achieve the animation effect accompanied by page scrolling like Shiseido's official website? How to achieve parallax scrolling and element animation effects, like Shiseido's official website? or: How can we achieve the animation effect accompanied by page scrolling like Shiseido's official website? Apr 04, 2025 pm 05:36 PM

Discussion on the realization of parallax scrolling and element animation effects in this article will explore how to achieve similar to Shiseido official website (https://www.shiseido.co.jp/sb/wonderland/)...

The Evolution of JavaScript: Current Trends and Future Prospects The Evolution of JavaScript: Current Trends and Future Prospects Apr 10, 2025 am 09:33 AM

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

How to merge array elements with the same ID into one object using JavaScript? How to merge array elements with the same ID into one object using JavaScript? Apr 04, 2025 pm 05:09 PM

How to merge array elements with the same ID into one object in JavaScript? When processing data, we often encounter the need to have the same ID...

JavaScript Engines: Comparing Implementations JavaScript Engines: Comparing Implementations Apr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

How to implement panel drag and drop adjustment function similar to VSCode in front-end development? How to implement panel drag and drop adjustment function similar to VSCode in front-end development? Apr 04, 2025 pm 02:06 PM

Explore the implementation of panel drag and drop adjustment function similar to VSCode in the front-end. In front-end development, how to implement VSCode similar to VSCode...

See all articles