Secure Text Encryption and Decryption with Vanilla JavaScript
In today’s digital age, securing sensitive information like API keys, passwords, and user data is more critical than ever. A robust encryption and decryption strategy can prevent unauthorized access and ensure data confidentiality. In this blog post, we’ll explore how to encrypt and decrypt text using vanilla JavaScript, leveraging the Web Crypto API for a modern, secure approach.
Why Use Encryption?
Encryption transforms readable data (plaintext) into a scrambled format (ciphertext) that can only be read if decrypted with the correct key. This ensures that even if someone intercepts the encrypted data, it remains meaningless without the key. A solid encryption mechanism protects:
- API keys stored in your frontend code.
- Sensitive user information.
- Any data transferred over insecure channels.
Let’s dive into how you can implement this securely in JavaScript.
Encryption and Decryption Using AES-GCM
We’ll use AES-GCM (Advanced Encryption Standard - Galois/Counter Mode), a modern standard that provides both encryption and integrity verification. The steps involve:
- Password Derivation: Use PBKDF2 (Password-Based Key Derivation Function 2) to derive a secure key from a password.
- Salt and IV: Generate a random salt (to make the password derivation unique) and iv (Initialization Vector) for each encryption.
- Encryption: Encrypt the plaintext using AES-GCM.
- Decryption: Decrypt the ciphertext using the same password and salt/iv.
Code Implementation
Here is the complete JavaScript implementation.
Utilities for Conversion
We’ll convert between ArrayBuffer and hexadecimal for easy data storage and retrieval:
function arrayBufferToHex(buffer) { return [...new Uint8Array(buffer)] .map(byte => byte.toString(16).padStart(2, '0')) .join(''); } function hexToArrayBuffer(hex) { const bytes = new Uint8Array(hex.length / 2); for (let i = 0; i < hex.length; i += 2) { bytes[i / 2] = parseInt(hex.substr(i, 2), 16); } return bytes.buffer; }
Key Derivation from Password
Use PBKDF2 to derive a strong encryption key:
async function getCryptoKey(password) { const encoder = new TextEncoder(); const keyMaterial = encoder.encode(password); return crypto.subtle.importKey( 'raw', keyMaterial, { name: 'PBKDF2' }, false, ['deriveKey'] ); } async function deriveKey(password, salt) { const keyMaterial = await getCryptoKey(password); return crypto.subtle.deriveKey( { name: 'PBKDF2', salt: salt, iterations: 100000, hash: 'SHA-256' }, keyMaterial, { name: 'AES-GCM', length: 256 }, false, ['encrypt', 'decrypt'] ); }
Encryption Function
Encrypt text with a password:
async function encryptText(text, password) { const encoder = new TextEncoder(); const salt = crypto.getRandomValues(new Uint8Array(16)); const iv = crypto.getRandomValues(new Uint8Array(12)); const key = await deriveKey(password, salt); const encrypted = await crypto.subtle.encrypt( { name: 'AES-GCM', iv: iv }, key, encoder.encode(text) ); return { cipherText: arrayBufferToHex(encrypted), iv: arrayBufferToHex(iv), salt: arrayBufferToHex(salt) }; }
Decryption Function
Decrypt text with the same password:
async function decryptText(encryptedData, password) { const { cipherText, iv, salt } = encryptedData; const key = await deriveKey(password, hexToArrayBuffer(salt)); const decrypted = await crypto.subtle.decrypt( { name: 'AES-GCM', iv: hexToArrayBuffer(iv) }, key, hexToArrayBuffer(cipherText) ); const decoder = new TextDecoder(); return decoder.decode(decrypted); }
Example Usage
Let’s see how to use these functions:
function arrayBufferToHex(buffer) { return [...new Uint8Array(buffer)] .map(byte => byte.toString(16).padStart(2, '0')) .join(''); } function hexToArrayBuffer(hex) { const bytes = new Uint8Array(hex.length / 2); for (let i = 0; i < hex.length; i += 2) { bytes[i / 2] = parseInt(hex.substr(i, 2), 16); } return bytes.buffer; }
Security Best Practices
- Use a Strong Password: The encryption is only as secure as the password you use.
- Store Salt and IV Safely: Always save the salt and iv alongside your encrypted data.
- Avoid Hardcoding Secrets: Never hardcode sensitive data or passwords in your codebase.
- Use HTTPS: Ensure your application uses HTTPS to protect data in transit.
Encrypting sensitive information like API keys is a fundamental step in securing your applications. I use this for API keys mostly.
The above is the detailed content of Secure Text Encryption and Decryption with Vanilla JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.
