


Essential Functions for Location-Based Apps in React Native Using Google Maps APIs
In location-centric applications, implementing robust features for geolocation, routing, and fare estimation is crucial. Here's a breakdown of the key utilities that can be implemented:
? 1. Fetching Latitude, Longitude, and Address
- Function: getLatLong(placeId)
- Purpose: Retrieves geographic coordinates (latitude and longitude) and the address for a given placeId using Google Places API.
- Use Case: Useful for identifying exact locations based on a unique placeId (e.g., for map markers).
- Example: For a placeId, the function returns the latitude, longitude, and address in a structured format.
? 2. Reverse Geocoding
- Function: reverseGeocode(latitude, longitude)
- Purpose: Converts geographic coordinates into a human-readable address using Google Geocoding API.
- Use Case: Display the address for a user's selected location or GPS coordinates.
- Example: Provide a user-friendly address like "Sydney NSW, Australia" for given coordinates.
? 3. Place Autocomplete Suggestions
- Function: getPlacesSuggestions(query)
- Purpose: Fetches location suggestions based on user input using Google Places Autocomplete API.
- Use Case: Enhances search functionality by providing a dropdown of location suggestions.
- Example: Suggests "Sydney Opera House" or "Sydney Airport" as the user types "Sydney."
? 4. Calculating Distance
- Function: calculateDistance(lat1, lon1, lat2, lon2)
- Purpose: Calculates the distance between two geographical points using the Haversine formula.
- Use Case: Ideal for estimating the distance between a user's current location and their destination.
- Example: Calculates 20.56 kilometers as the distance between two sets of coordinates.
? 5. Dynamic Fare Estimation
- Function: calculateFare(distance)
- Purpose: Computes fares for different vehicle types (bike, auto, economy cab, premium cab) based on the distance traveled.
- Use Case: Useful for ride-hailing apps or delivery services to dynamically display fare estimates.
- Example: Provides fare details like ₹50 for a bike or ₹100 for an economy cab for a 10-km trip.
✨ 6. Generating Smooth Routes Using Bezier Curves
- Function: getPoints(places)
- Purpose: Creates a smooth, visually appealing route between two points using quadratic Bezier curves.
- Use Case: Adds polished route visualization on maps for navigation apps.
- Example: Generates 100 points along a curve between two locations to create a smooth polyline.
? 7. Vehicle Icon Management
- Utility: vehicleIcons
- Purpose: Maps vehicle types (e.g., bike, auto, cabEconomy) to their respective icons for a consistent and dynamic UI.
- Use Case: Display appropriate icons based on the selected vehicle type in ride-hailing or delivery apps.
- Example: Fetches the icon for a "bike" or "cabPremium" dynamically.
Full Code:
import axios from "axios"; import { useUserStore } from "@/store/userStore"; /** * Fetch latitude, longitude, and address details for a given place ID. * @param {string} placeId - The unique identifier for a place (e.g., "ChIJN1t_tDeuEmsRUsoyG83frY4"). * @returns {Promise<{latitude: number, longitude: number, address: string}>} Location data. * Example response: * { * latitude: -33.8670522, * longitude: 151.1957362, * address: "Sydney NSW, Australia" * } */ export const getLatLong = async (placeId: string) => { try { const response = await axios.get("https://maps.googleapis.com/maps/api/place/details/json", { params: { placeid: placeId, // Place ID for the location key: process.env.EXPO_PUBLIC_MAP_API_KEY, // API key for authentication }, }); const data = response.data; // Validate response status and extract required fields if (data.status === "OK" && data.result) { const location = data.result.geometry.location; // Get latitude and longitude const address = data.result.formatted_address; // Get formatted address return { latitude: location.lat, longitude: location.lng, address: address, }; } else { // Handle API response errors throw new Error("Unable to fetch location details"); } } catch (error) { // Catch and throw any request or processing errors throw new Error("Unable to fetch location details"); } }; /** * Reverse geocode latitude and longitude to fetch the address. * @param {number} latitude - Latitude of the location (e.g., -33.8670522). * @param {number} longitude - Longitude of the location (e.g., 151.1957362). * @returns {Promise<string>} Address of the location. * Example response: "Sydney NSW, Australia" */ export const reverseGeocode = async (latitude: number, longitude: number) => { try { const response = await axios.get( `https://maps.googleapis.com/maps/api/geocode/json?latlng=${latitude},${longitude}&key=${process.env.EXPO_PUBLIC_MAP_API_KEY}` ); // Check if the response status is OK and extract the address if (response.data.status === "OK") { const address = response.data.results[0].formatted_address; return address; // Return the formatted address } else { // Log failure details and return an empty string console.log("Geocoding failed: ", response.data.status); return ""; } } catch (error) { // Handle any request or processing errors console.log("Error during reverse geocoding: ", error); return ""; } }; /** * Extract relevant place data from API response. * @param {Array} data - Array of place predictions from the API. * @returns {Array<{place_id: string, title: string, description: string}>} Processed place data. * Example response: * [ * { place_id: "xyz123", title: "Sydney Opera House", description: "Iconic performing arts venue in Sydney" } * ] */ function extractPlaceData(data: any) { return data.map((item: any) => ({ place_id: item.place_id, // Unique identifier for the place title: item.structured_formatting.main_text, // Main title of the place description: item.description, // Detailed description })); } /** * Fetch autocomplete suggestions for places based on a query. * @param {string} query - User's input for place suggestions (e.g., "Sydney"). * @returns {Promise<Array>} List of place suggestions. * Example response: * [ * { place_id: "xyz123", title: "Sydney Opera House", description: "Iconic performing arts venue in Sydney" } * ] */ export const getPlacesSuggestions = async (query: string) => { const { location } = useUserStore.getState(); // Get user's current location from the store try { const response = await axios.get( `https://maps.googleapis.com/maps/api/place/autocomplete/json`, { params: { input: query, // Query string for suggestions location: `${location?.latitude},${location?.longitude}`, // Use current location for proximity radius: 50000, // Search within a 50km radius components: "country:IN", // Restrict results to India key: process.env.EXPO_PUBLIC_MAP_API_KEY, // API key for authentication } } ); // Process and return extracted place data return extractPlaceData(response.data.predictions); } catch (error) { // Log errors and return an empty array console.error("Error fetching autocomplete suggestions:", error); return []; } }; /** * Calculate the distance between two geographic coordinates using the Haversine formula. * @param {number} lat1 - Latitude of the first point (e.g., 28.7041). * @param {number} lon1 - Longitude of the first point (e.g., 77.1025). * @param {number} lat2 - Latitude of the second point (e.g., 28.5355). * @param {number} lon2 - Longitude of the second point (e.g., 77.3910). * @returns {number} Distance in kilometers. * Example response: 20.56 */ export const calculateDistance = (lat1: number, lon1: number, lat2: number, lon2: number) => { const R = 6371; // Earth's radius in kilometers const dLat = (lat2 - lat1) * (Math.PI / 180); // Latitude difference in radians const dLon = (lon2 - lon1) * (Math.PI / 180); // Longitude difference in radians const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(lat1 * (Math.PI / 180)) * Math.cos(lat2 * (Math.PI / 180)) * Math.sin(dLon / 2) * Math.sin(dLon / 2); // Haversine formula const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); // Angular distance return R * c; // Distance in kilometers }; /** * Calculate fare for different vehicle types based on the distance traveled. * @param {number} distance - Distance traveled in kilometers (e.g., 15). * @returns {Object} Fare breakdown for each vehicle type. * Example response: * { * bike: 50, * auto: 60, * cabEconomy: 100, * cabPremium: 150 * } */ export const calculateFare = (distance: number) => { // Fare rates for different vehicle types const rateStructure = { bike: { baseFare: 10, perKmRate: 5, minimumFare: 25 }, auto: { baseFare: 15, perKmRate: 7, minimumFare: 30 }, cabEconomy: { baseFare: 20, perKmRate: 10, minimumFare: 50 }, cabPremium: { baseFare: 30, perKmRate: 15, minimumFare: 70 }, }; // Helper function to calculate fare const fareCalculation = (baseFare: number, perKmRate: number, minimumFare: number) => { const calculatedFare = baseFare + (distance * perKmRate); // Calculate fare based on distance return Math.max(calculatedFare, minimumFare); // Ensure the fare meets the minimum }; // Return fare details for each vehicle type return { bike: fareCalculation(rateStructure.bike.baseFare, rateStructure.bike.perKmRate, rateStructure.bike.minimumFare), auto: fareCalculation(rateStructure.auto.baseFare, rateStructure.auto.perKmRate, rateStructure.auto.minimumFare), cabEconomy: fareCalculation(rateStructure.cabEconomy.baseFare, rateStructure.cabEconomy.perKmRate, rateStructure.cabEconomy.minimumFare), cabPremium: fareCalculation(rateStructure.cabPremium.baseFare, rateStructure.cabPremium.perKmRate, rateStructure.cabPremium.minimumFare), }; }; /** * Generate points along a quadratic Bezier curve between two points with a control point. * @param {Array<number>} p1 - The starting point of the curve [latitude, longitude] (e.g., [28.7041, 77.1025]). * @param {Array<number>} p2 - The ending point of the curve [latitude, longitude] (e.g., [28.5355, 77.3910]). * @param {Array<number>} controlPoint - The control point for the curve [latitude, longitude] (e.g., [28.6, 77.25]). * @param {number} numPoints - The number of points to generate along the curve. * @returns {Array<{latitude: number, longitude: number}>} Array of coordinates forming the curve. * Example response: * [ * { latitude: 28.7041, longitude: 77.1025 }, * { latitude: 28.635, longitude: 77.175 }, * { latitude: 28.5355, longitude: 77.3910 } * ] */ function quadraticBezierCurve(p1: any, p2: any, controlPoint: any, numPoints: any) { const points = []; const step = 1 / (numPoints - 1); // Step size for dividing the curve for (let t = 0; t <= 1; t += step) { const x = (1 - t) ** 2 * p1[0] + // Contribution of starting point 2 * (1 - t) * t * controlPoint[0] + // Contribution of control point t ** 2 * p2[0]; // Contribution of ending point const y = (1 - t) ** 2 * p1[1] + 2 * (1 - t) * t * controlPoint[1] + t ** 2 * p2[1]; const coord = { latitude: x, longitude: y }; // Store as coordinate object points.push(coord); // Add to the points array } return points; // Return array of points forming the curve } /** * Calculate the control point for a quadratic Bezier curve between two points. * @param {Array<number>} p1 - The starting point [latitude, longitude]. * @param {Array<number>} p2 - The ending point [latitude, longitude]. * @returns {Array<number>} The control point [latitude, longitude]. * Example response: [28.6, 77.25] */ const calculateControlPoint = (p1: any, p2: any) => { const d = Math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2); // Distance between p1 and p2 const scale = 1; // Scale factor for bending the curve const h = d * scale; // Adjusted distance from midpoint const w = d / 2; // Halfway between points const x_m = (p1[0] + p2[0]) / 2; // Midpoint x const y_m = (p1[1] + p2[1]) / 2; // Midpoint y const x_c = x_m + ((h * (p2[1] - p1[1])) / (2 * Math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2))) * (w / d); const y_c = y_m - ((h * (p2[0] - p1[0])) / (2 * Math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2))) * (w / d); return [x_c, y_c]; // Return calculated control point }; /** * Generate Bezier curve points for given locations. * @param {Array<{latitude: number, longitude: number}>} places - Array containing at least two points. * @returns {Array<{latitude: number, longitude: number}>} Array of coordinates forming the curve. * Example response: * [ * { latitude: 28.7041, longitude: 77.1025 }, * { latitude: 28.635, longitude: 77.175 }, * { latitude: 28.5355, longitude: 77.3910 } * ] */ export const getPoints = (places: any) => { const p1 = [places[0].latitude, places[0].longitude]; // Starting point const p2 = [places[1].latitude, places[1].longitude]; // Ending point const controlPoint = calculateControlPoint(p1, p2); // Calculate the control point return quadraticBezierCurve(p1, p2, controlPoint, 100); // Generate 100 points along the curve }; /** * Map of vehicle types to their respective icons. * @type {Record<'bike' | 'auto' | 'cabEconomy' | 'cabPremium', { icon: any }>} * Example usage: * vehicleIcons.bike.icon -> Path to bike icon */ export const vehicleIcons: Record<'bike' | 'auto' | 'cabEconomy' | 'cabPremium', { icon: any }> = { bike: { icon: require('@/assets/icons/bike.png') }, // Icon for bike auto: { icon: require('@/assets/icons/auto.png') }, // Icon for auto cabEconomy: { icon: require('@/assets/icons/cab.png') }, // Icon for economy cab cabPremium: { icon: require('@/assets/icons/cab_premium.png') }, // Icon for premium cab };
? Conclusion
These utilities empower developers to:
- Integrate seamless location-based services.
- Enhance user experience with real-time data and intuitive visuals.
- Build scalable and dynamic React Native applications with Google Maps APIs.
By combining geolocation, route visualization, and fare estimation, you can significantly elevate your app's functionality and deliver more value to your users.
The above is the detailed content of Essential Functions for Location-Based Apps in React Native Using Google Maps APIs. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing
