


Why Do Go Slice Range Loops Create Shared Addresses When Mapping Structs?
Understanding the Go Slice Range Phenomenon
Problem: The Mysterious Slice Range Behavior
In Go, slices are a powerful data structure that can be iterated over using the range keyword. However, in a peculiar phenomenon, when iterating over a slice of structs using a for-range, the elements in the resulting map share the same address. This behavior can be confusing, especially since the elements in the original slice should have unique addresses.
Explanation: The Gotcha of Local Variables
The key to understanding this phenomenon lies in the way variables are stored in memory. When accessing an element of the slice within the for-range loop (stu in this case), the local variable stu is holding a copy of the struct. Assigning the pointer to the local variable effectively points all the elements in the map to the same copy of the struct in memory.
Resolving the Issue: Passing Slice Element Addresses
To resolve this issue and assign the addresses of the slice elements, the code must be modified to take the address of the slice element itself. By using s[i] instead of stu, the pointer to the actual element in the slice is assigned to the map.
Example: Demonstrating the Solution
package main import "fmt" type student struct { Name string Age int } func main() { m := make(map[string]*student) s := []student{ {Name: "Allen", Age: 24}, {Name: "Tom", Age: 23}, } for i := range s { m[s[i].Name] = &s[i] // Change here } fmt.Println(m) for key, value := range m { fmt.Println(key, value) } }
Output:
map[Allen:0xc0000a6058 Tom:0xc0000a6060] Allen &{Allen 24} Tom &{Tom 23}
Conclusion
By understanding the underlying memory management behavior, we can address this slice range phenomenon in Go. By taking the address of the slice element itself, we ensure that each element in the map points to a unique struct in memory, maintaining data integrity.
The above is the detailed content of Why Do Go Slice Range Loops Create Shared Addresses When Mapping Structs?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t
