


Why Does Floating-Point Multiplication Produce Different Results with Variables and Literals in Go?
Variable vs. Literal Floating-Point Multiplication in Go: A Precision Puzzle
In Go, comparing floating-point literals to their variable counterparts may yield surprising results. Consider the following code:
x := 10.1 fmt.Println("x*3.0 == 10.1*3.0:", x*3.0 == 10.1*3.0)
Although the multiplication operations are identical, the result is false. Why is there a discrepancy?
Constants and Precision
Floating-point constants and literals in Go possess unlimited precision. However, upon assignment to a typed variable, the value must conform to the type's constraints. In this case, x is assigned to a float64, which has limited precision.
Preserving Precision
When explicitly specifying a float literal, as in 10.1*3.0, the full precision is maintained before the operation is performed. In contrast, when assigning a float literal to a variable, precision is lost during conversion to the target type.
Implications
This behavior is by design and has implications for floating-point comparisons. When comparing a typed variable to its literal equivalent, precision differences may cause unexpected results. As documented in the Go blog post on constants, numerical constants exist in an unconstrained numeric space, but face limits when assigned to specific types.
Example
Consider the following constant declared in Go:
const Huge = 1e1000
While this constant can be used within expressions, it cannot be assigned to a float64 variable due to its excessive precision. Hence, the statement fmt.Println(Huge) will fail to compile.
Conclusion
The discrepancy in floating-point multiplication between literals and variables stems from the loss of precision during assignment to typed variables. Understanding this behavior is crucial for avoiding unexpected outcomes and ensuring accurate comparisons in Go floating-point operations.
The above is the detailed content of Why Does Floating-Point Multiplication Produce Different Results with Variables and Literals in Go?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t
