


Why Do Floating-Point Comparisons in Go Sometimes Yield Unexpected Results?
Floating-Point Precision Differences in Go: Constants vs. Variables
In Go, floating-point literals and constants maintain arbitrary precision until assigned to a specific type. However, certain operations and assignments introduce precision differences that can be unexpected.
Consider the following code:
package main import ( "fmt" ) func main() { x := 10.1 fmt.Println("x == 10.1: ", x == 10.1) fmt.Println("x*3.0 == 10.1*3.0:", x*3.0 == 10.1*3.0) }
This code produces the output:
x == 10.1: true x*3.0 == 10.1*3.0: false
Why are these expressions not equal, despite performing the same floating-point operation?
Untyped Constants and Variables
Number literals and constants in Go are untyped, with unlimited precision. Upon assignment to a variable, such as x := 10.1, the literal is converted to the variable's type (float64 in this case) and loses some precision.
Full Precision Constants
In contrast, literal expressions like 10.1*3.0 maintain full precision before evaluation. When assigned to a variable, they are immediately converted to the variable's type, ensuring precision is maintained.
Precision Considerations
Understanding the differences in precision handling can be crucial for accurate floating-point calculations. For example, when comparing values to a specified tolerance, it is important to use literals or expressions with full precision to avoid false positives.
Documentation
This behavior is well-documented in the Go blog article "Constants" under the "Floats" header, which explains that while numeric constants have arbitrary precision, they must fit within the range of the variable they are assigned to.
Conclusion
The difference in precision between floating-point constants vs. variables in Go is by design, allowing for greater flexibility and performance trade-offs in floating-point operations. By understanding these precision differences, programmers can optimize their code for accuracy and efficiency.
The above is the detailed content of Why Do Floating-Point Comparisons in Go Sometimes Yield Unexpected Results?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...
