


Why Does `c_str()` Return Garbage When Used Directly on Function Return Strings?
Unveiling the enigma of c_str() in function return strings
The c_str() function is a powerful tool to convert a std::string object into a const char*. However, when applied directly to the return value of a function that returns a string, it can yield mysterious results.
The Essence of the Problem
Consider the following code snippet:
string str = SomeFunction(); const char* strConverted = str.c_str(); // strConverted stores the value of the string properly const char* charArray= SomeFunction().c_str(); // charArray stores garbage value static string SomeFunction() { string str; // does some string stuff return str; }
In this scenario, strConverted correctly holds the value of the returned string. However, charArray is filled with gibberish. Why does this baffling behavior occur?
Delving into Temporaries
The key lies in the nature of the return value. When SomeFunction() returns a string, the string is actually a temporary object. Temporary objects have a limited lifetime, typically ending at the end of the current block of code.
The Trap of Dangling Pointers
c_str() returns a pointer to the internal buffer of the string. When called on a temporary string directly (e.g., SomeFunction().c_str()), the returned pointer becomes a dangling pointer as the temporary object swiftly vanishes. This dangling pointer is what plagues charArray with unreliable data.
The Solution: Extending Lifetime
To avoid these perils, it's imperative to extend the lifetime of the temporary string. One simple approach is to assign it to a new string variable, as demonstrated in the str_copy example. By doing so, the string object is persisted, ensuring a valid pointer from c_str().
In Conclusion
When dealing with function return strings, caution is advised when using c_str() directly on the return value. To prevent the pitfalls of dangling pointers, assign the return value to a new string variable before invoking c_str(). This guarantees a stable pointer to the string's contents.
The above is the detailed content of Why Does `c_str()` Return Garbage When Used Directly on Function Return Strings?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.
