Home Backend Development C++ Representing and Manipulating Information in modern computer - Part 2

Representing and Manipulating Information in modern computer - Part 2

Nov 22, 2024 pm 02:18 PM

Representing and Manipulating Information in modern computer - Part 2

Link to Part 1

Addressing and Byte ordering

A 4-byte int in a 32-bit machine stores all its 4 bytes in contigous sequence of bytes. It can be store in two way namely Little endian and Big endian depending on machine. Not going much into details a Little endian stores an int(4bytes on 32-bit) of hexadeciaml value 0x01234567 something like following(assuming starting address is 0x100):
Addresses/Values
0x100 67
0x101 45
0x102 23
0x103 01
and similary a Big endian will look like following:
Addresses/Values
0x100 01
0x101 23
0x102 45
0x103 67
I hope you can see the difference in the ordering. Linux 32bit, Windows, Linux 64bit follows Little endian whereas SunOS/SPARC follows Big endian.

This is important because when sending a message over a network from Little endian byte ordering machine to Big endian byte ordering machines and vice-versa could be an issue. Most of the programmers don't find it is an issue because networking applications are written in a way which does this convertions for us but if you are writting an network application, you might need to consider this.

Integer Arithmetic

You might be surpised to know, adding two positive number can result in a negative number and x < y can give you different result then x - y < 0.

Let me give you an example, lets say we have a computer which stores an int as 4-bit and we have two unsigned int x and y.

unsigned int x = 10; // binary rep: 1010
unsigned int y = 15; // binary rep: 1111
unsigned int z = x y; // ???

The value of z is 25. right? right?

Well no. If you convert 25 into its binary representation, it comes out to be 11001 but as I mentioned our computer can only store 4-bit integers(values from 0-15 incase of unsigned). So, what will our computer do with the extra 1-bit? You are right, it will drop the higher-order bit(first bit from left) and we will get 1001 which converts to 9. This is same as doing module with 16 ie 25 mod 16=9. This behavior of computer not limited to arthmetic is also called Overflow.

But why I'm using unsigned int here? Will this addition behave differently with signed integers?

Answer: Yes but before explaining what will the result and how our computer ended up with that, lets first understand how signed and unsigned is different with our 4-bit size integer.

signed integers

They can store positive and negative both numbers values from -8(bin rep: 1000) to 7(bin rep: 0111). The higher-order bit(first bit from left) is the one which gives signed integer negative values and rest of the bits yields in positive. So, to get smallest number we need to flip higher-order to 1 and other bits 0 and to get largest number we need to flip higher-order bit to 0 and other bits to 1.

unsigned integers

They can only store positive numbers values from 0(binary rep: 0000) to 15(bin rep: 1111).

Now, because x=10 and y=15 will overflow before addition, we will use something smaller:
int x = 5; // 0101
int y = 6; // 0110
int z = x y // ???

The binary representation should be 1011 if we ignore signed consideration. As you can see, the higher-order bit is flipped to 1 and from above, the value of z will be -5(= -1*2ˆ3 2ˆ1 2ˆ0) instead of 11.

and also, adding two negative can result in postivie. eg,
int x = -8 // 1000
int y = -5 // 0101
int z = x y // ???

Now z will be -13 which is 10011 in binary(the higher-order bit is for negatives ie -1*2ˆ4 = -16) but our computer can only store 4-bits so it will drop higher-order bit and become 0011 which is 3 in decimal. Again, overflow.

This is why x < y could result differently from x - y < 0 if we does not handle arthmetic overflows properly. As a programmer, we should always pay attention while choosing datatypes by considering their capacties and behavior in different situations as they might become result of hours of debugging.

That's all for today. Please comment out if some information here is wrong or is missing. Thank you.

The above is the detailed content of Representing and Manipulating Information in modern computer - Part 2. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1669
14
PHP Tutorial
1273
29
C# Tutorial
1256
24
C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

C# vs. C  : Learning Curves and Developer Experience C# vs. C : Learning Curves and Developer Experience Apr 18, 2025 am 12:13 AM

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C   and XML: Exploring the Relationship and Support C and XML: Exploring the Relationship and Support Apr 21, 2025 am 12:02 AM

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

What is static analysis in C? What is static analysis in C? Apr 28, 2025 pm 09:09 PM

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

How to use the chrono library in C? How to use the chrono library in C? Apr 28, 2025 pm 10:18 PM

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

Beyond the Hype: Assessing the Relevance of C   Today Beyond the Hype: Assessing the Relevance of C Today Apr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The Future of C  : Adaptations and Innovations The Future of C : Adaptations and Innovations Apr 27, 2025 am 12:25 AM

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.

C  : Is It Dying or Simply Evolving? C : Is It Dying or Simply Evolving? Apr 24, 2025 am 12:13 AM

C isnotdying;it'sevolving.1)C remainsrelevantduetoitsversatilityandefficiencyinperformance-criticalapplications.2)Thelanguageiscontinuouslyupdated,withC 20introducingfeatureslikemodulesandcoroutinestoimproveusabilityandperformance.3)Despitechallen

See all articles