Home Backend Development C++ Rust Threads safety: A comparison with C.

Rust Threads safety: A comparison with C.

Nov 19, 2024 am 11:54 AM

In this POC (Proof of Concept), we will explore how the Rust language treats race conditions, comparing it with C , a widely used language, but with fewer security guarantees for competition.

Rust Threads safety: A Comparison with C

Threads Safety: Data Races from C to Rust

Index

  • 1. Introduction
  • 2. Threads
  • 3. Implementation in C
    • 3.1. Code without Protection Against Race Conditions
    • 3.2. Fixing with Mutex
  • 4. Implementation in Rust
    • 4.1. Problem with Race Conditions
    • 4.2. Resolution with Mutex and Arc
    • 4.3. Mutex vs. RwLock
  • 5. Conclusion
  • 6. References

1. Introduction

In computing, threads are used to divide software tasks into subtasks that can be executed concurrently. By using threads, we gain processing time and make better use of the machine's resources, but this competition brings challenges, such as race conditions, which can generate serious inconsistencies in the data.


2. Threads

Threads are execution units that allow you to process tasks simultaneously. We can think of threads as independent flows of execution within a program, illustrated in the image below:

Rust Threads safety: Uma comparação com C.

While threads bring performance advantages, they introduce risks, especially when accessing shared resources.

In addition, threads can be used to implement parallelism, where multiple tasks are executed simultaneously on different CPU cores. This allows the program to make better use of the available hardware, speeding up the execution of independent tasks.


3. Implementation in C

Let's create a simple system in C:

  1. An initial balance of 1000.
  2. A set of transactions that can be credits or debits.
  3. Parallel processing of these transactions using threads.

3.1. Code without Protection Against Race Conditions

When we opt for an environment with multithreading processing what we call race conditions can happen, when 2 threads access and modify the same value we have a race condition. This problem occurs because synchronization of the value accessed in each thread is not guaranteed due to competition between calls.

When executing this code several times, the final balance varies, as threads access and change balance simultaneously.

Rust Threads safety: Uma comparação com C.


3.2. Fixing with Mutex

Mutex is a synchronization primitive that ensures that only one thread has access to a shared resource at a time. The acronym mutex comes from the English term mutual exclusion, which means "mutual exclusion".

When a thread acquires a mutex, any other thread attempting to acquire the same mutex is suspended until the first thread releases the mutex. This prevents two or more processes (threads) from having simultaneous access to the shared resource.

Rust Threads safety: Uma comparação com C.

4. Implementation in Rust

Thinking of Rust as a language absent from data race is not productive, but we can understand how structs and its compiler contribute by bringing great features for memory and thread safety.

Rust treats race conditions with compile-time guarantees, using features such as ownership, borrowing and concurrency-safe structures:

  • Arc: Secure sharing of immutable data.
  • Mutex and RwLock: Access control for mutable data.

4.1. Problem with Race Conditions

Without the use of Arc and Mutex structs

Rust does not allow direct access to mutable data (balance) from multiple threads without protection.
The compiler will generate an error because balance is being moved to multiple threads (handle1 and handle2) without a safe mechanism.
Error message that will be displayed is:

4.2. Resolution with Mutex and Arc

Using Mutex and Arc we were able to compile and execute our code, with the race condition issues addressed.

4.3. Mutex vs. RwLock

Mutex and RwLock are used to handle race conditions, each with specific advantages:

Mutex: Guarantees exclusive access to a resource for one thread, blocking access to others until it is released. It's simple and effective, but even reads block the resource, making it less efficient in read-heavy scenarios.

RwLock: Allows multiple simultaneous reads with .read() and restricts exclusive writing with .write(). It is Ideal for scenarios with a predominance of reads, as it improves performance by allowing parallelism in read operations.


5. Conclusion

The comparison between C and Rust highlights different approaches to solving race conditions. While C requires attention to avoid race condition errors, Rust reduces these risks at compile time, through tools such as Mutex, RwLock and Arc in addition to the ownership model. This not only makes the code more secure, but also reduces the programmer's mental load by avoiding silent bugs.

In summary, Rust positions itself as an excellent choice for developing competing systems, offering security and reliability.


6. References

  • Repo with codes: https://github.com/z4nder/rust-data-races
  • https://en.wikipedia.org/wiki/Race_condition
  • https://blog.bughunt.com.br/o-que-sao-vulnerabilidades-race-condition/
  • https://medium.com/cwi-software/spring-boot-race-condition-e-ambiente-multi-thread-263b21e0042e
  • https://learn.microsoft.com/en-us/troubleshoot/developer/visualstudio/visual-basic/language-compilers/race-conditions-deadlocks
  • https://www.reddit.com/r/rust/comments/18faxjg/understanding_threadsafety_vs_race_conditions/?rdt=52263
  • https://doc.rust-lang.org/nomicon/races.html
  • https://news.ycombinator.com/item?id=23599598

The above is the detailed content of Rust Threads safety: A comparison with C.. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C language data structure: data representation and operation of trees and graphs C language data structure: data representation and operation of trees and graphs Apr 04, 2025 am 11:18 AM

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth behind the C language file operation problem The truth behind the C language file operation problem Apr 04, 2025 am 11:24 AM

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

What are the basic requirements for c language functions What are the basic requirements for c language functions Apr 03, 2025 pm 10:06 PM

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values ​​to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

Function name definition in c language Function name definition in c language Apr 03, 2025 pm 10:03 PM

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Concept of c language function Concept of c language function Apr 03, 2025 pm 10:09 PM

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

CS-Week 3 CS-Week 3 Apr 04, 2025 am 06:06 AM

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

C language multithreaded programming: a beginner's guide and troubleshooting C language multithreaded programming: a beginner's guide and troubleshooting Apr 04, 2025 am 10:15 AM

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.

See all articles