Home Web Front-end JS Tutorial Predicting House Prices with XGBoost in Node.js

Predicting House Prices with XGBoost in Node.js

Nov 15, 2024 pm 02:51 PM

Predicting House Prices with XGBoost in Node.js

What Is XGBoost?

XGBoost is popular machine learning algorithm that regularly places high in Kaggle and other data science competitions. What sets XGBoost apart is its ability to combine multiple weak models (in this case, decision trees) into a strong one. This is done through a technique called gradient boosting, which helps make the algorithm robust and highly effective for a wide variety of predictive tasks.

How Does XGBoost Work?

XGBoost uses gradient boosting, which means it builds trees sequentially where each tree tries to correct the mistakes of the previous trees. Here's a simplified view of the process:

  1. Make an initial prediction (could be the average of all target values)
  2. Calculate how wrong this prediction was (the error)
  3. Build a decision tree to predict this error
  4. Add this tree's predictions to our running prediction total (but scaled down to prevent overconfidence)
  5. Repeat steps 2-4 many times

For example, if we're predicting house prices:

  • First tree might predict $200,000
  • If actual price is $250,000, the error is $50,000
  • Next tree focuses on predicting this $50,000 error
  • Final prediction combines all trees' predictions

This process, combined with some clever mathematics and optimizations, makes XGBoost both accurate and fast.

Why XGBoost in Node.js?

While XGBoost is originally implemented as a C library, there are bindings available for languages like Python and R, making it accessible to a wide range of developers who typically specialize in data and machine learning.

I recently had a project that had a hard requirement for Node.js, so I saw an opportunity to bridge the gap by writing bindings for Node.js. I hope this helps open up the door to more ML for JavaScript developers.

In this article, we'll take a closer look at how to use XGBoost in your Node.js applications.

Prerequisites

Before getting started, ensure you have:

  • Linux operating system (current requirement for xgboost_node)
  • Node.js version 18.0.0 or higher
  • Basic understanding of machine learning concepts

Installation

Install the XGBoost Node.js bindings using npm:

npm install xgboost_node
Copy after login

Understanding the Data

Before jumping into the code, let's understand what our features represent in the house price prediction example:

// Each feature array represents:
[square_feet, property_age, total_rooms, has_parking, neighborhood_type, is_furnished]

// Example:
[1200,       8,            10,           0,           1,                1        ]
Copy after login

Here's what each feature means:

  • square_feet: The size of the property (e.g., 1200 sq ft)
  • property_age: Age of the property in years (e.g., 8 years)
  • total_rooms: Total number of rooms (e.g., 10 rooms)
  • has_parking: Binary (0 = no parking, 1 = has parking)
  • neighborhood_type: Category (1 = residential, 2 = commercial area)
  • is_furnished: Binary (0 = unfurnished, 1 = furnished)

And the corresponding labels array contains house prices in thousands (e.g., 250 means $250,000).

Transforming Your Data

If you have raw data in a different format, here's how to transform it for XGBoost:

// Let's say you have data in this format:
const rawHouses = [
    {
        address: "123 Main St",
        sqft: 1200,
        yearBuilt: 2015,
        rooms: 10,
        parking: "Yes",
        neighborhood: "Residential",
        furnished: true,
        price: 250000
    },
    // ... more houses
];

// Transform it to XGBoost format:
const features = rawHouses.map(house => [
    house.sqft,
    new Date().getFullYear() - house.yearBuilt,  // Convert year built to age
    house.rooms,
    house.parking === "Yes" ? 1 : 0,             // Convert Yes/No to 1/0
    house.neighborhood === "Residential" ? 1 : 2, // Convert category to number
    house.furnished ? 1 : 0                       // Convert boolean to 1/0
]);

const labels = rawHouses.map(house => house.price / 1000); // Convert price to thousands
Copy after login

Training Your First Model

Here's a complete example that shows how to train a model and make predictions:

import xgboost from 'xgboost_node';

async function test() {
    const features = [
        [1200, 8, 10, 0, 1, 1],
        [800, 14, 15, 1, 2, 0],
        [1200, 8, 10, 0, 1, 1],
        [1200, 8, 10, 0, 1, 1],
        [1200, 8, 10, 0, 1, 1],
        [800, 14, 15, 1, 2, 0],
        [1200, 8, 10, 0, 1, 1],
        [1200, 8, 10, 0, 1, 1],
    ];
    const labels = [250, 180, 250, 180, 250, 180, 250, 180];

    const params = {
        max_depth: 3,
        eta: 0.3,
        objective: 'reg:squarederror',
        eval_metric: 'rmse',
        nthread: 4,
        num_round: 100,
        min_child_weight: 1,
        subsample: 0.8,
        colsample_bytree: 0.8,
    };

    try {
        await xgboost.train(features, labels, params);
        const predictions = await xgboost.predict([[1000, 0, 1, 0, 1, 1], [800, 0, 1, 0, 1, 1]]);
        console.log('Predicted value:', predictions[0]);
    } catch (error) {
        console.error('Error:', error);
    }
}

test();
Copy after login

The example above shows how to:

  1. Set up training data with features and labels
  2. Configure XGBoost parameters for training
  3. Train the model
  4. Make predictions on new data

Model Management

XGBoost provides straightforward methods for saving and loading models:

// Save model after training
await xgboost.saveModel('model.xgb');

// Load model for predictions
await xgboost.loadModel('model.xgb');
Copy after login

Further Considerations

You may have noticed there are parameters for this model. I would advise looking into XGBoost documentation to understand how to tune and choose your parameters. Here's what some of these parameters are trying to achieve:

const params = {
    max_depth: 3,              // Controls how deep each tree can grow
    eta: 0.3,                 // Learning rate - how much we adjust for each tree
    objective: 'reg:squarederror',  // For regression problems
    eval_metric: 'rmse',      // How we measure prediction errors
    nthread: 4,               // Number of parallel processing threads
    num_round: 100,           // Number of trees to build
    min_child_weight: 1,      // Minimum amount of data in a leaf
    subsample: 0.8,           // Fraction of data to use in each tree
    colsample_bytree: 0.8,    // Fraction of features to consider for each tree
};
Copy after login

These parameters significantly impact your model's performance and behavior. For example:

  • Lower max_depth helps prevent overfitting but might underfit if too low
  • Lower eta means slower learning but can lead to better generalization
  • Higher num_round means more trees, which can improve accuracy but increases training time

Conclusion

This guide provides a starting point for using XGBoost in Node.js. For production use, I recommend:

  1. Understanding and tuning the XGBoost parameters for your specific use case
  2. Implementing proper cross-validation to evaluate your model
  3. Testing with different data scenarios to ensure robustness
  4. Monitoring model performance in production

Jonathan Farrow

@farrow_jonny

The above is the detailed content of Predicting House Prices with XGBoost in Node.js. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What should I do if I encounter garbled code printing for front-end thermal paper receipts? What should I do if I encounter garbled code printing for front-end thermal paper receipts? Apr 04, 2025 pm 02:42 PM

Frequently Asked Questions and Solutions for Front-end Thermal Paper Ticket Printing In Front-end Development, Ticket Printing is a common requirement. However, many developers are implementing...

Demystifying JavaScript: What It Does and Why It Matters Demystifying JavaScript: What It Does and Why It Matters Apr 09, 2025 am 12:07 AM

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

Who gets paid more Python or JavaScript? Who gets paid more Python or JavaScript? Apr 04, 2025 am 12:09 AM

There is no absolute salary for Python and JavaScript developers, depending on skills and industry needs. 1. Python may be paid more in data science and machine learning. 2. JavaScript has great demand in front-end and full-stack development, and its salary is also considerable. 3. Influencing factors include experience, geographical location, company size and specific skills.

How to achieve parallax scrolling and element animation effects, like Shiseido's official website?
or:
How can we achieve the animation effect accompanied by page scrolling like Shiseido's official website? How to achieve parallax scrolling and element animation effects, like Shiseido's official website? or: How can we achieve the animation effect accompanied by page scrolling like Shiseido's official website? Apr 04, 2025 pm 05:36 PM

Discussion on the realization of parallax scrolling and element animation effects in this article will explore how to achieve similar to Shiseido official website (https://www.shiseido.co.jp/sb/wonderland/)...

Is JavaScript hard to learn? Is JavaScript hard to learn? Apr 03, 2025 am 12:20 AM

Learning JavaScript is not difficult, but it is challenging. 1) Understand basic concepts such as variables, data types, functions, etc. 2) Master asynchronous programming and implement it through event loops. 3) Use DOM operations and Promise to handle asynchronous requests. 4) Avoid common mistakes and use debugging techniques. 5) Optimize performance and follow best practices.

The Evolution of JavaScript: Current Trends and Future Prospects The Evolution of JavaScript: Current Trends and Future Prospects Apr 10, 2025 am 09:33 AM

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

How to merge array elements with the same ID into one object using JavaScript? How to merge array elements with the same ID into one object using JavaScript? Apr 04, 2025 pm 05:09 PM

How to merge array elements with the same ID into one object in JavaScript? When processing data, we often encounter the need to have the same ID...

How to implement panel drag and drop adjustment function similar to VSCode in front-end development? How to implement panel drag and drop adjustment function similar to VSCode in front-end development? Apr 04, 2025 pm 02:06 PM

Explore the implementation of panel drag and drop adjustment function similar to VSCode in the front-end. In front-end development, how to implement VSCode similar to VSCode...

See all articles