System Design: Building a Parking Lot System in Go
In this article, we’ll go through a low-level design (LLD) implementation of a parking lot system in Go. We'll explore different aspects of the system and see how each component interacts with the rest. This implementation focuses on clarity and real-world usefulness, so you can extend it easily if you want to add features like more vehicle types, multiple payment options, or spot reservations.
The system handles tasks like managing parking floors and spots, parking and unparking vehicles, and processing payments. We’ll also ensure it’s thread-safe for concurrent access, so if we need to expand it into a larger system, it won’t break down under pressure.
Core Components
Our design includes six main components:
- Parking Lot - The main entry point managing floors and parking operations.
- Parking Floor - Each floor contains multiple parking spots for different types of vehicles.
- Parking Spot - Represents a parking spot that can hold a specific type of vehicle.
- Parking Ticket - Tracks entry/exit times, parking charges, and the associated vehicle.
- Payment System - Handles parking fee calculations and payment processing.
- Vehicle Types - Supports different types of vehicles (cars, vans, trucks, and motorcycles). Each type has a different hourly charge.
Singleton Parking Lot
Our ParkingLot uses the Singleton pattern. This means there’s only one instance of the parking lot, which is created once and reused across the application. Here’s the code to get that working:
var ( parkingLotInstance *ParkingLot once sync.Once ) type ParkingLot struct { Name string floors []*ParkingFloor } func GetParkingLotInstance() *ParkingLot { once.Do(func() { parkingLotInstance = &ParkingLot{} }) return parkingLotInstance }
Using sync.Once, we ensure that only one instance is created, even when accessed by multiple goroutines.
Managing Floors in the Parking Lot
The parking lot has multiple floors, each with designated parking spots for different vehicle types (e.g., cars, vans, trucks, and motorcycles). To add a floor to the parking lot, we use the AddFloor method:
func (p *ParkingLot) AddFloor(floorID int) { p.floors = append(p.floors, NewParkingFloor(floorID)) }
Each floor is created using the NewParkingFloor function, which organizes spots by vehicle type.
Parking Spots
Each ParkingSpot is associated with a specific vehicle type (like a car or motorcycle). This allows the system to manage and restrict which vehicles can park in each spot. Here’s the ParkingSpot structure and the ParkVehicle method:
type ParkingSpot struct { SpotID int VehicleType vehicles.VehicleType CurrentVehicle *vehicles.VehicleInterface lock sync.Mutex } func (p *ParkingSpot) ParkVehicle(vehicle vehicles.VehicleInterface) error { p.lock.Lock() defer p.lock.Unlock() if vehicle.GetVehicleType() != p.VehicleType { return fmt.Errorf("vehicle type mismatch: expected %s, got %s", p.VehicleType, vehicle.GetVehicleType()) } if p.CurrentVehicle != nil { return fmt.Errorf("parking spot already occupied") } p.CurrentVehicle = &vehicle return nil }
We use a Mutex lock to make sure only one vehicle can park in a spot at a time.
Parking Ticket
Every vehicle gets a ticket with the entry time, exit time, parking spot, and total charge. This ticket will be updated when the vehicle exits, and charges will be calculated based on the time spent parked.
var ( parkingLotInstance *ParkingLot once sync.Once ) type ParkingLot struct { Name string floors []*ParkingFloor } func GetParkingLotInstance() *ParkingLot { once.Do(func() { parkingLotInstance = &ParkingLot{} }) return parkingLotInstance }
The CalculateTotalCharge method calculates parking fees based on the vehicle type and duration.
Payment System
The PaymentSystem class processes the payment, updating the payment status based on whether the required amount is paid:
func (p *ParkingLot) AddFloor(floorID int) { p.floors = append(p.floors, NewParkingFloor(floorID)) }
The ProcessPayment function checks the amount and updates the payment status to Completed or Failed.
Adding Vehicle Types
Our system supports different types of vehicles (cars, vans, trucks, and motorcycles). Each type has a different hourly charge. This is achieved by setting up a VehicleType and VehicleInterface in a separate vehicles package:
type ParkingSpot struct { SpotID int VehicleType vehicles.VehicleType CurrentVehicle *vehicles.VehicleInterface lock sync.Mutex } func (p *ParkingSpot) ParkVehicle(vehicle vehicles.VehicleInterface) error { p.lock.Lock() defer p.lock.Unlock() if vehicle.GetVehicleType() != p.VehicleType { return fmt.Errorf("vehicle type mismatch: expected %s, got %s", p.VehicleType, vehicle.GetVehicleType()) } if p.CurrentVehicle != nil { return fmt.Errorf("parking spot already occupied") } p.CurrentVehicle = &vehicle return nil }
We can create new vehicles by calling NewCar, NewVan, NewTruck, etc., each of which implements VehicleInterface.
Bringing It All Together
Let’s see how the pieces fit together in a flow:
- Create a Parking Lot: Call GetParkingLotInstance() and add floors with AddFloor.
- Find Parking Spot and Park Vehicle: ParkVehicle method finds an available spot, validates it against the vehicle type, and generates a ticket.
- Unpark Vehicle and Process Payment: UnparkVehicle generates the total charge, initiates the payment system, and completes the transaction.
This parking lot system is a simplified starting point for building more complex systems. We covered the basics of floor and spot management, vehicle parking and unparking, and a basic payment process.
For full code implementation, check the following repository:
thesaltree
/
low-level-design-golang
Low level system design solutions in Golang
Low-Level System Design in Go
Welcome to the Low-Level System Design in Go repository! This repository contains various low-level system design problems and their solutions implemented in Go. The primary aim is to demonstrate the design and architecture of systems through practical examples.
Table of Contents
- Overview
- Parking Lot System
- Elevator System
- Library Management System
- Vending Machine System
- Social Media Platform
Overview
Low-level system design involves understanding the core concepts of system architecture and designing scalable, maintainable, and efficient systems. This repository will try to cover solutions of various problems and scenarios using Go.
Parking Lot System
The first project in this repository is a Parking Lot System. This system simulates a parking lot where vehicles can be parked and unparked. It demonstrates:
- Singleton design pattern for managing the parking lot instance.
- Handling different types of vehicles (e.g., cars, trucks).
- Parking space management across multiple floors.
- Payment processing for…
The above is the detailed content of System Design: Building a Parking Lot System in Go. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.
