Is Append in Go Thread-Safe When Used with Goroutines?
Is Append Really Thread-Safe?
Synchronization is crucial when dealing with concurrent access to shared resources in Go. A common practice is to append elements to a slice using goroutines. However, the append function is not inherently thread-safe.
In the case described, creating separate goroutines within a loop to append to a slice can lead to data inconsistencies. This is because multiple goroutines writing to the same slice concurrently can result in data races.
To demonstrate this, consider the following code snippet:
destSlice := make([]myClass, 0) var wg sync.WaitGroup for _, myObject := range sourceSlice { wg.Add(1) go func(closureMyObject myClass) { defer wg.Done() var tmpObj myClass tmpObj.AttributeName = closureMyObject.AttributeName destSlice = append(destSlice, tmpObj) }(myObject) } wg.Wait()
Running this code with the -race option will reveal multiple data races. To prevent these races, a synchronization mechanism such as a mutex must be employed. Here's a revised code snippet using a mutex:
var ( mu = &sync.Mutex{} destSlice = make([]myClass, 0) ) var wg sync.WaitGroup for _, myObject := range sourceSlice { wg.Add(1) go func(closureMyObject myClass) { defer wg.Done() var tmpObj myClass tmpObj.AttributeName = closureMyObject.AttributeName mu.Lock() destSlice = append(destSlice, tmpObj) mu.Unlock() }(myObject) } wg.Wait()
An alternative solution is to use a channel into which goroutines send the values to be appended. A dedicated goroutine can handle receiving these values and perform the append operation.
In summary, while slice elements are distinct variables and can be accessed concurrently without synchronization, slice headers require synchronization to prevent data races during concurrent append operations.
The above is the detailed content of Is Append in Go Thread-Safe When Used with Goroutines?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t
