TIL emalloc() auto-exits on out-of-memory errors
I was tired of writing this over and over:
double* data = (double*)malloc(20 * sizeof(double)); if (data == NULL) { fputs("out of memory", stderr); abort(); }
And today I learned that there's a family of e___() functions like emalloc() and ecalloc() which will exit the process if the malloc()-returned pointer is NULL. These functions are only present in the BSD family of operating system's util.h system header. They aren't standard C functions.
#include <util.h> void (*)(int, const char *, ...) esetfunc(void (*)(int, const char *, ...)); int easprintf(char ** restrict str, const char * restrict fmt, ...); FILE * efopen(const char *p, const char *m); void * ecalloc(size_t n, size_t s); void * emalloc(size_t n); void * erealloc(void *p, size_t n); void ereallocarr(void *p, size_t n, size_t s); char * estrdup(const char *s); char * estrndup(const char *s, size_t len); size_t estrlcat(char *dst, const char *src, size_t len); size_t estrlcpy(char *dst, const char *src, size_t len); intmax_t estrtoi(const char * nptr, int base, intmax_t lo, intmax_t hi); uintmax_t estrtou(const char * nptr, int base, uintmax_t lo, uintmax_t hi); int evasprintf(char ** restrict str, const char * restrict fmt, ...);
The easprintf(), efopen(), ecalloc(), emalloc(), erealloc(), ereallocarr(), estrdup(), estrndup(), estrlcat(), estrlcpy(), estrtoi(), estrtou(), and evasprintf() functions operate exactly as the corresponding functions that do not start with an e except that in case of an error, they call the installed error handler that can be configured with esetfunc().
For the string handling functions, it is an error when the destination buffer is not large enough to hold the complete string. For functions that allocate memory or open a file, it is an error when they would return a null pointer. The default error handler is err(). The function esetfunc() returns the previous error handler function. A NULL error handler will just call exit().
— emalloc(3) - NetBSD Manual Pages
These functions are relatively simple. You can easily implement them yourself.
// I don't know if static or inline is better. inline void * emalloc(size_t n) { void *p = malloc(n); if (p == NULL) { fputs("out of memory", stderr); abort(); } return p; } // Do the same wrapper thing for all the other functions.
I just thought it was cool that this was a thing that is built into an operating system's C standard library. That's batteries included for sure.
What do other languages do on out-of-memory errors?
- Java: Throw an exception
- C : Throw an exception
- Rust: Abort or panic
- JavaScript: Crash the engine
- Python: Throws a special exception
- Go: Terminate
And then there's C: Return a null pointer. ?♀️ Great if you need that control, a hassle if you want the happy path.
The above is the detailed content of TIL emalloc() auto-exits on out-of-memory errors. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers
