


Why Does Floating Point Arithmetic Differ Between x86 and x64 Architectures?
Difference in Floating Point Arithmetic Between x86 and x64
When executing an identical piece of code on MS VS 2010 for both x86 and x64 architectures (both running on a 64-bit machine), a notable difference in floating point arithmetic emerged.
Consider the following code snippet:
float a = 50.0f; float b = 65.0f; float c = 1.3f; float d = a * c; bool bLarger1 = d < b; bool bLarger2 = (a * c) < b;
In both x86 and x64 builds, bLarger1 remains false (d is set to 65.0). However, in the x64 build, bLarger2 is false, while in the x86 build, it is true.
The discrepancy arises from the expression bLarger2 = (a * c) < b. The generated code reveals that under x86, the evaluation is performed in the x87 unit, which operates at higher-than-single-precision (generally double precision), whereas under x64, the evaluation is performed in the x64 unit, which performs pure single-precision calculations.
To ensure that the 32-bit unit performs calculations in single precision, the following control word can be set:
_controlfp(_PC_24, _MCW_PC);
This will result in both booleans being set to false in the 32-bit program.
The underlying issue stems from the inherent difference between the x87 and SSE floating point units. The x87 unit uses identical instructions for both single and double precision types, while the SSE unit employs distinct instructions for each. Consequently, the compiler can exert more control over calculation precision in the SSE unit.
Overall, the disparity between x86 and x64 floating point arithmetic arises from the operating modes of the respective floating point units. To ensure consistent behavior, it is recommended to explore options for persuading the compiler to emit SSE instructions even for 32-bit targets.
The above is the detailed content of Why Does Floating Point Arithmetic Differ Between x86 and x64 Architectures?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.

C isnotdying;it'sevolving.1)C remainsrelevantduetoitsversatilityandefficiencyinperformance-criticalapplications.2)Thelanguageiscontinuouslyupdated,withC 20introducingfeatureslikemodulesandcoroutinestoimproveusabilityandperformance.3)Despitechallen
