Is Compile-Time Evaluation of `constexpr` Functions Guaranteed in C ?
Compile-Time String Length Computation: A Caveat for C Programmers
Determining the length of a string at compile time can be a valuable optimization for efficient string handling. In C , programmers may utilize the constexpr keyword to achieve this. However, a common misconception exists regarding the guaranteed evaluation of constexpr functions at compile time.
Consider the following code snippet:
<code class="cpp">#include <cstdio> int constexpr length(const char* str) { return *str ? 1 + length(str + 1) : 0; } int main() { printf("%d %d", length("abcd"), length("abcdefgh")); }</code>
In this code, we define a constexpr function length that recursively computes the length of a C-style string. The assembly code generated shows that the results are calculated during compilation.
So, is compile-time evaluation of length guaranteed by the C standard?
No. While it is possible that many compilers will evaluate constexpr functions at compile time, the standard does not mandate it. According to the draft C standard section 5.19, constant expressions can be evaluated during translation (i.e., compile time), but this is merely a non-normative note.
To ensure compile-time evaluation, programmers can adopt two strategies:
- Require compile-time evaluation: Use constexpr in a context that necessitates constant expressions, such as array bounds or case labels.
- Initialize a constexpr variable: Assign the result of the constexpr function to a constexpr variable.
For example:
<code class="cpp">constexpr int len1 = length("abcd");</code>
Conclusion:
While constexpr functions offer the potential for compile-time computation, programmers should be aware of the limitations of their guaranteed evaluation. By adhering to the aforementioned strategies, developers can harness the power of constexpr to optimize string-handling tasks at compile time.
The above is the detailed content of Is Compile-Time Evaluation of `constexpr` Functions Guaranteed in C ?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

The application of static analysis in C mainly includes discovering memory management problems, checking code logic errors, and improving code security. 1) Static analysis can identify problems such as memory leaks, double releases, and uninitialized pointers. 2) It can detect unused variables, dead code and logical contradictions. 3) Static analysis tools such as Coverity can detect buffer overflow, integer overflow and unsafe API calls to improve code security.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

The future of C will focus on parallel computing, security, modularization and AI/machine learning: 1) Parallel computing will be enhanced through features such as coroutines; 2) Security will be improved through stricter type checking and memory management mechanisms; 3) Modulation will simplify code organization and compilation; 4) AI and machine learning will prompt C to adapt to new needs, such as numerical computing and GPU programming support.
