


Can Defer Functions Modify Local Variables During Panic Recovery in Go?
Panic Recovery with Local Variables
In Go, panic recovery using defer functions can modify named return values within the surrounding function. However, when local variables are used as return values, this mechanism does not function as expected.
Consider the following example where named return values (result and err) are modified within the defer function:
<code class="go">func main() { result, err := foo() fmt.Println("result:", result) if err != nil { fmt.Println("err:", err) } } func foo() (result int, err error) { defer func() { if e := recover(); e != nil { result = -1 err = errors.New(e.(string)) } }() bar() result = 100 err = nil return } func bar() { panic("panic happened") }</code>
This code recovers from a panic and correctly modifies the named return values result and err. However, consider the following example where local variables are used as return values:
<code class="go">func main() { result, err := foo() fmt.Println("result:", result) if err != nil { fmt.Println("err:", err) } } func foo() (int, error) { var result int var err error defer func() { if e := recover(); e != nil { result = -1 err = errors.New(e.(string)) } }() bar() result = 100 err = nil return result, err } func bar() { panic("panic happened") }</code>
In this case, the defer function is unable to modify the result and err variables, resulting in unexpected output where result remains 0.
This behavior arises from the fact that the defer statement applies to the function literal, not the surrounding function itself. Consequently, the local variables (result and err) are not accessible within the function literal. In contrast, named return values are accessible within the function literal since they are essentially variables initialized at the beginning of the function.
The above is the detailed content of Can Defer Functions Modify Local Variables During Panic Recovery in Go?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.
