Table of Contents
1. Considering missing values (`NaN`) as false.
2. Attempting to compare missing values
3. Thinking that all() only returns true when all elements are true.
4. Converting to bool values
5. Understanding the results of the isin() operation.
Learn more about using Python for data preparation
Home Backend Development Python Tutorial 5 common Python pitfalls for data preparation

5 common Python pitfalls for data preparation

Oct 29, 2024 am 09:44 AM
python

Python is a powerful language for data preparation, but there are some common mistakes or pitfalls folks may encounter. In this blog post, I'll discuss five of the most common issues folks encounter when using Python for data preparation.

5 common Python pitfalls for data preparation

1. Considering missing values (`NaN`) as false.

False, None, and 0 (of any numeric type) all evaluate to False.

This set of objects and values are known as “falsy” and will evaluate to false. NaN or missing values are not falsy and therefore will not evaluate to false. This can cause much confusion and unexpected behavior by many operations.

2. Attempting to compare missing values

It seems simple enough that NaN == NaN will return true. Both values "look" the same.

However, as it's impossible to know if the two missing values are the same, this operation will always return false.

3. Thinking that all() only returns true when all elements are true.

The all() method returns true if all elements of the iterable are true (or if the iterable is empty). 

Don't think of it as “Return true if all the elements of the iterable are true,” but instead “Return true if there are no false elements in the iterable.”

When the iterable is empty, there can be no false elements within it, meaning all([]) evaluates to True.

4. Converting to bool values

Pandas follows the numpy convention of raising an error when you try to convert something to a bool. This happens in an if or when using the Boolean operations, and, or, or not.

It is not clear what the result should be. Should it be True because it is not zero-length? False because there are False values?

It is unclear, so instead, Pandas raises a ValueError

ValueError: The truth value of a Series is ambiguous. 

Use a.empty, a.bool() a.item(),a.any() or a.all().

5. Understanding the results of the isin() operation.

The isin() operation returns a Boolean series showing whether each element in the Series is exactly contained in the passed sequence of values.

 s = pd.Series(['dog', 'cat', 'fish'])
>>> s.isin(['bird'])
0    False
1    False
2    False
dtype: bool
Copy after login

Note that 'bird' does not exist in the series.

>>> s.isin(['bird', 'cat'])
0    False
1     True
2    False
dtype: bool
Copy after login

Note 'cat' does exist in the 2nd value of the series.

Learn more about using Python for data preparation

Python is a powerful language, but confusion can arise around missing and boolean values. Keep in mind that missing values are considered false and they cannot be compared. 

When using the all() method, remember that it returns true when there are no false values in the iterable.  If all values are missing, like in the case of an empty array, all() also returns true as missing values are not considered false. 

If you receive a ValueError when attempting to convert to bool values, be sure to take the helpful advice and use one of the suggested methods.

The above is the detailed content of 5 common Python pitfalls for data preparation. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1266
29
C# Tutorial
1239
24
PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

See all articles