Table of Contents
How to optimise this 8-bit positional popcount using assembly?
Home Backend Development Golang How can you optimize an 8-bit positional popcount algorithm using assembly, specifically by focusing on the inner loop and utilizing techniques like prefetching and scalar population counting?

How can you optimize an 8-bit positional popcount algorithm using assembly, specifically by focusing on the inner loop and utilizing techniques like prefetching and scalar population counting?

Oct 27, 2024 am 09:02 AM

How can you optimize an 8-bit positional popcount algorithm using assembly, specifically by focusing on the inner loop and utilizing techniques like prefetching and scalar population counting?

How to optimise this 8-bit positional popcount using assembly?

In the provided code, the function __mm_add_epi32_inplace_purego can be optimized using assembly to improve its performance. The inner loop in particular can be optimized for faster execution.

The provided algorithm for counting positional population is called a "positional population count." This algorithm is used in machine learning and involves counting the number of set bits in a series of bytes. In the given code, _mm_add_epi32_inplace_purego is called in two levels of loop, and the goal is to optimize the inner loop.

The provided code primarily works on an array of 8-bit integers called counts. The inner loop iterates over a byte slice, and for each byte, it adds the corresponding bit positions from an array of bit patterns (_expand_byte) to the counts array. The _expand_byte array contains bit patterns that expand each byte into its individual bits.

To optimize the inner loop using assembly, you need to keep the counters in general-purpose registers for better performance and prefetch memory well in advance to improve streaming behavior. You can also implement scalar population counting using a simple shift and add combination (SHRL/ADCL).

An example of optimized assembly code is provided below. This code is written for a specific processor architecture and may need to be modified to run on other systems.

<code class="assembly">#include "textflag.h"

// func PospopcntReg(counts *[8]int32, buf []byte)
TEXT ·PospopcntReg(SB),NOSPLIT,-32
    MOVQ counts+0(FP), DI
    MOVQ buf_base+8(FP), SI     // SI = &buf[0]
    MOVQ buf_len+16(FP), CX     // CX = len(buf)

    // load counts into register R8--R15
    MOVL 4*0(DI), R8
    MOVL 4*1(DI), R9
    MOVL 4*2(DI), R10
    MOVL 4*3(DI), R11
    MOVL 4*4(DI), R12
    MOVL 4*5(DI), R13
    MOVL 4*6(DI), R14
    MOVL 4*7(DI), R15

    SUBQ , CX            // pre-subtract 32 bit from CX
    JL scalar

vector: VMOVDQU (SI), Y0        // load 32 bytes from buf
    PREFETCHT0 384(SI)      // prefetch some data
    ADDQ , SI            // advance SI past them

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R15            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R14            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R13            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R12            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R11            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R10            // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R9         // add to counter
    VPADDD Y0, Y0, Y0       // shift Y0 left by one place

    VPMOVMSKB Y0, AX        // move MSB of Y0 bytes to AX
    POPCNTL AX, AX          // count population of AX
    ADDL AX, R8         // add to counter

    SUBQ , CX
    JGE vector          // repeat as long as bytes are left

scalar: ADDQ , CX            // undo last subtraction
    JE done             // if CX=0, there's nothing left

loop:   MOVBLZX (SI), AX        // load a byte from buf
    INCQ SI             // advance past it

    SHRL , AX         // CF=LSB, shift byte to the right
    ADCL , R8         // add CF to R8

    SHRL , AX
    ADCL , R9         // add CF to R9

    SHRL , AX
    ADCL , R10            // add CF to R10

    SHRL , AX
    ADCL , R11            // add CF to R11

    SHRL , AX
    ADCL , R12            // add CF to R12

    SHRL , AX
    ADCL , R13            // add CF to R13

    SHRL , AX
    ADCL , R14            // add CF to R14

    SHRL , AX
    ADCL , R15            // add CF to R15

    DECQ CX             // mark this byte as done
    JNE loop            // and proceed if any bytes are left

    // write R8--R15 back to counts
done:   MOVL R8, 4*0(DI)
    MOVL R9, 4*1(DI)
    MOVL R10, 4*2(DI)
    MOVL R11, 4*3(DI)
    MOVL R12, 4*4(DI)
    MOVL R13, 4*5(DI)
    MOVL R14, 4*6(DI)
    MOVL R15, 4*7(DI)

    VZEROUPPER          // restore SSE-compatibility
    RET</code>
Copy after login

In summary, the optimization involves using general-purpose registers for counters, prefetching memory in advance, and implementing scalar population counting using SHRL/ADCL. This approach can significantly improve the performance of the positional population count algorithm.

The above is the detailed content of How can you optimize an 8-bit positional popcount algorithm using assembly, specifically by focusing on the inner loop and utilizing techniques like prefetching and scalar population counting?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1672
14
PHP Tutorial
1277
29
C# Tutorial
1257
24
Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Getting Started with Go: A Beginner's Guide Getting Started with Go: A Beginner's Guide Apr 26, 2025 am 12:21 AM

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. Python: The Pros and Cons Golang vs. Python: The Pros and Cons Apr 21, 2025 am 12:17 AM

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

See all articles