Home Backend Development Golang ## How to Avoid Deadlocks in Concurrent Go Programs?

## How to Avoid Deadlocks in Concurrent Go Programs?

Oct 25, 2024 am 09:00 AM

## How to Avoid Deadlocks in Concurrent Go Programs?

Solving Goroutines Deadlock in Go Concurrency

In concurrent Go programs, deadlocks can occur when goroutines indefinitely wait for each other to release resources. To resolve such deadlocks, consider the following example:

<code class="go">// Create a channel for communication between goroutines.
ch := make(chan int)

// Start producer goroutines that send values to the channel.
go producer(ch, 100*time.Millisecond, 2)
go producer(ch, 200*time.Millisecond, 5)

// Indefinite loop to continuously receive values from the channel.
for {
    fmt.Println(<-ch)
}</code>
Copy after login

This code results in a deadlock error: "fatal error: all goroutines are asleep - deadlock!" This occurs because the producers have a finite lifespan, eventually stopping transmission, while the consumer goroutine endlessly waits for new values. To avoid this deadlock, two main strategies can be employed:

1. Channel Termination:

Since channels can only be closed once, it's essential for producers to signal termination to the consumer. A coordinator can monitor the completion of producers and close the channel accordingly.

2. Coordinated Synchronization:

Using a synchronization primitive like sync.WaitGroup, producers can notify the coordinator when they have finished, and the coordinator can close the channel once all producers are done.

Updated Code Using Synchronization:

<code class="go">import (
    "fmt"
    "sync"
    "time"
)

func producer(ch chan int, d time.Duration, num int, wg *sync.WaitGroup) {
    defer wg.Done()

    for i := 0; i < num; i++ {
        ch <- i
        time.Sleep(d)
    }
}

func main() {
    // Create a WaitGroup for coordinating producer completion.
    wg := &sync.WaitGroup{}

    // Initialize the channel for communication between goroutines.
    ch := make(chan int)

    // Start producer goroutines.
    wg.Add(2)
    go producer(ch, 100*time.Millisecond, 2, wg)
    go producer(ch, 200*time.Millisecond, 5, wg)

    // Assign a goroutine to close the channel when all producers have finished.
    go func() {
        wg.Wait()
        close(ch)
    }()

    // Iterate over values from the channel until it's closed.
    for v := range ch {
        fmt.Println(v)
    }
}</code>
Copy after login

Conclusion:

By implementing either channel termination or coordinated synchronization, developers can effectively avoid goroutines deadlocks and ensure proper coordination in concurrent Go programs.

The above is the detailed content of ## How to Avoid Deadlocks in Concurrent Go Programs?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What are the vulnerabilities of Debian OpenSSL What are the vulnerabilities of Debian OpenSSL Apr 02, 2025 am 07:30 AM

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

How to specify the database associated with the model in Beego ORM? How to specify the database associated with the model in Beego ORM? Apr 02, 2025 pm 03:54 PM

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Apr 02, 2025 am 09:12 AM

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

What should I do if the custom structure labels in GoLand are not displayed? What should I do if the custom structure labels in GoLand are not displayed? Apr 02, 2025 pm 05:09 PM

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...

What libraries are used for floating point number operations in Go? What libraries are used for floating point number operations in Go? Apr 02, 2025 pm 02:06 PM

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

What is the problem with Queue thread in Go's crawler Colly? What is the problem with Queue thread in Go's crawler Colly? Apr 02, 2025 pm 02:09 PM

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

How to configure MongoDB automatic expansion on Debian How to configure MongoDB automatic expansion on Debian Apr 02, 2025 am 07:36 AM

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys

How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? Apr 02, 2025 pm 04:54 PM

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

See all articles