


Does the C Code Chaining Method Calls in Stroustrup\'s \'The C Programming Language\' 4th Edition Have Well-Defined Behavior?
Does this Code from "The C Programming Language" 4th Edition Section 36.3.6 Have Well-Defined Behavior?
The code in question demonstrates chaining method calls:
<code class="cpp">std::string s = "but I have heard it works even if you don't believe in it" ; s.replace(0, 4, "" ).replace( s.find( "even" ), 4, "only" ) .replace( s.find( " don't" ), 6, "" ); assert( s == "I have heard it works only if you believe in it" ) ;</code>
However, the assert fails in certain compilers like GCC and Visual Studio, while it passes in Clang.
The Issue
This code exhibits unspecified behavior due to the unspecified order of evaluating sub-expressions, as function arguments are evaluated in an unsequenced order. Chained function calls introduce a left-to-right evaluation order for each function call, but the arguments of each call are only sequenced before the member function call they belong to.
In the code, the sub-expressions s.find("even") and s.find(" don't") are indeterminately sequenced with respect to s.replace(0, 4, ""). Depending on the order of evaluation, the result can vary due to potential side effects.
Unspecified Order of Evaluation
The code can be broken down as follows:
s.replace(0, 4, "" ) // A .replace( s.find( "even" ), 4, "only" ) // B .replace( s.find( " don't" ), 6, "" ); // C
A is sequenced before B, which is sequenced before C. Items 1-9 are indeterminately sequenced with respect to each other, except for the following relationships:
- 1-3 are sequenced before B
- 4-6 are sequenced before C
- 7-9 are sequenced before D
However, 4-9 are indeterminately sequenced with respect to B. This choice of evaluation order for 4 and 7 with respect to B explains the different results between Clang and GCC.
Testing Evaluation Order
A test program can be used to demonstrate the evaluation order:
<code class="cpp">std::string::size_type my_find( std::string s, const char *cs ) { std::string::size_type pos = s.find( cs ) ; std::cout << "position " << cs << " found in complete expression: " << pos << std::endl ; return pos ; } int main() { std::string s = "but I have heard it works even if you don't believe in it" ; std::string copy_s = s ; std::cout << "position of even before s.replace(0, 4, \"\" ): " << s.find( "even" ) << std::endl ; std::cout << "position of don't before s.replace(0, 4, \"\" ): " << s.find( " don't" ) << std::endl << std::endl; copy_s.replace(0, 4, "" ) ; std::cout << "position of even after s.replace(0, 4, \"\" ): " << copy_s.find( "even" ) << std::endl ; std::cout << "position of don't after s.replace(0, 4, \"\" ): " << copy_s.find( " don't" ) << std::endl << std::endl; s.replace(0, 4, "" ).replace( my_find( s, "even" ) , 4, "only" ) .replace( my_find( s, " don't" ), 6, "" ); std::cout << "Result: " << s << std::endl ; }</code>
The results differ based on the evaluation order of B with respect to 4 and 7.
C 17 Changes
C 17 introduced changes in p0145r3 that give this code well-defined behavior by strengthening the order of evaluation rules for postfix expressions and their expression lists. Specifically, this change specifies that all expressions in the expression list are sequenced before the function is entered. This ensures that the code will produce the same result regardless of the evaluation order of the individual sub-expressions.
The above is the detailed content of Does the C Code Chaining Method Calls in Stroustrup\'s \'The C Programming Language\' 4th Edition Have Well-Defined Behavior?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers
