Home Backend Development Golang Why Do Goroutines Behave Differently on Go Playground vs. Local Machine?

Why Do Goroutines Behave Differently on Go Playground vs. Local Machine?

Oct 23, 2024 pm 02:56 PM

Why Do Goroutines Behave Differently on Go Playground vs. Local Machine?

Discrepancies between Go Playground and Go on Your Machine

When comparing the behavior of goroutines in Go on the Go Playground and on your local machine, you may encounter discrepancies. To clarify the underlying reasons, let's delve into your specific example.

On the Go Playground, with GOMAXPROCS initially set to 1, the code you provided is expected to produce a "Process took too long" error. This is because the goroutine created within the other() function executes an infinite loop, preventing the main goroutine from continuing and receiving data from the done channel.

However, on your local machine, the GOMAXPROCS value is likely set to a higher number (e.g., the number of CPU cores available). This allows multiple goroutines to run concurrently. In your case, the main goroutine receives data from the done channel while the other goroutine runs the infinite loop in parallel. Once the data is received, the main goroutine proceeds and terminates the program, irrespective of the other goroutine still running.

This non-deterministic behavior is inherent to the Go memory model. The order of execution of goroutines is not guaranteed, unless explicit synchronization mechanisms are employed.

Explanation:

On the Go Playground, GOMAXPROCS is set to 1. This means that only one goroutine can run at a time. In your code, the main goroutine executes the main() function and creates a second goroutine that executes the other() function. The main goroutine then waits on the done channel, which is blocked.

Since only one goroutine can run at a time, the scheduler chooses to continue running the other() function. This function sends a value on the done channel, making both the current (other()) and the main goroutine runnable. However, the scheduler continues to run other(), since GOMAXPROCS=1.

Other() then launches another goroutine executing an endless loop. The scheduler chooses to execute this goroutine, which takes forever to reach a blocked state. As a result, the main() function is not continued and the program runs indefinitely, prompting the "Process took too long" error on the Go Playground.

Locally, GOMAXPROCS is likely greater than 1. This allows multiple goroutines to run concurrently. Once other() sends data to the done channel, the scheduler can switch to the main goroutine, which proceeds to finish and terminate the program. Even if other goroutines are still running, the program will exit when the main goroutine terminates.

The above is the detailed content of Why Do Goroutines Behave Differently on Go Playground vs. Local Machine?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Golang's Purpose: Building Efficient and Scalable Systems Golang's Purpose: Building Efficient and Scalable Systems Apr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

See all articles