Home Backend Development C++ Implementing malloc() and free() — old memory reused first

Implementing malloc() and free() — old memory reused first

Oct 11, 2024 am 10:12 AM

Im vorherigen Beitrag dieser Serie zur Implementierung von malloc() und free() haben wir gezeigt, wie es möglich ist, Speicherblöcke wiederzuverwenden und den Heap zu reduzieren, indem neuere Blöcke freigegeben werden. Allerdings bringt die aktuelle Funktion ein subtiles Problem mit sich: Sie priorisiert die Wiederverwendung neuerer Blöcke, was mit der Zeit zu einem erhöhten Speicherverbrauch führen kann. Warum passiert das? Lass es uns aufschlüsseln.

Heap-Reduktion durch Wiederverwendung aktueller Blöcke

Stellen Sie sich das folgende Szenario vor. Zuerst weisen wir vier Speicherblöcke zu:

void *ptr1 = abmalloc(8);
void *ptr2 = abmalloc(8);
void *ptr3 = abmalloc(8);
void *ptr4 = abmalloc(8);
Copy after login

Die Speicherstruktur kann folgendermaßen visualisiert werden:

Implementing malloc() and free() — old memory reused first

Jetzt geben wir den ersten und dritten Block frei...

abfree(ptr1);
abfree(ptr3);
Copy after login

…was zu folgender Struktur führt:

Implementing malloc() and free() — old memory reused first

Dann weisen wir einen weiteren Block derselben Größe zu:

void *ptr5 = abmalloc(8);
Copy after login

Wenn die Funktion abmalloc() mit der Suche nach dem neuesten freien Block beginnt, verwendet sie den Block oben wieder. Wenn wir jetzt den letzten Block freigeben:

Implementing malloc() and free() — old memory reused first

Wenn wir jetzt den letzten Block freigeben…

abfree(ptr4);
Copy after login

…wir können die Heap-Größe um nur einen 8-Byte-Block reduzieren, da der vorherige Block nicht mehr frei ist:

Implementing malloc() and free() — old memory reused first

Wiederverwendung alter Blöcke

Stellen Sie sich nun das gleiche Szenario vor, jedoch mit einer Änderung: Unsere Funktion beginnt mit der Suche nach freien Blöcken ab dem ältesten Block. Die anfängliche Struktur wird dieselbe sein…

Implementing malloc() and free() — old memory reused first

…und wieder geben wir den ersten und dritten Speicherblock frei:

Implementing malloc() and free() — old memory reused first

Dieses Mal wird der erste Block wiederverwendet:

Implementing malloc() and free() — old memory reused first

Wenn wir nun den letzten Block freigeben, haben wir oben zwei freie Blöcke, sodass wir den Heap um zwei 8-Byte-Blöcke reduzieren können:

Implementing malloc() and free() — old memory reused first

Dieses Beispiel zeigt, wie wir durch die Bevorzugung neuerer Blöcke letztendlich alte ungenutzte Blöcke ansammeln, Speicher verschwenden und zu unnötigem Heap-Wachstum führen. Die Lösung besteht darin, die Suchstrategie zu ändern und der Wiederverwendung älterer Blöcke Vorrang einzuräumen.

Präferenz für alte Blöcke implementieren

Um dieses Problem zu lösen, fügen wir zunächst einen Zeiger auf den nächsten Block im Header hinzu. Wir werden auch einen globalen Zeiger auf den ersten Block erstellen, damit wir die Suche von dort aus starten können:

typedef struct Header {
  struct Header *previous, *next;
  size_t size;
  bool available;
} Header;
Header *first = NULL;
Header *last = NULL;
Copy after login

Wir werden Speicherblöcke mit Headern in zwei verschiedenen Situationen erstellen, also nehmen wir eine kleine Umgestaltung vor: Wir werden diese Logik in eine Hilfsfunktion extrahieren, die den Header zuweist und initialisiert (einschließlich der Festlegung des Felds next mit NULL):

Header *header_new(Header *previous, size_t size, bool available) {
  Header *header = sbrk(sizeof(Header) + size);
  header->previous = previous;
  header->next = NULL;
  header->size = size;
  header->available = false;
  return header;
}
Copy after login

Mit dieser neuen Funktion können wir die Logik in abmalloc():
vereinfachen

void *abmalloc(size_t size) { 
  if (size == 0) { 
    return NULL; 
  } 
  Header *header = last; 
  while (header != NULL) { 
    if (header->available && (header->size >= size)) { 
      header->available = false; 
      return header + 1; 
    } 
    header = header->previous; 
  } 
  last = header_new(last, size, false); 
  return last + 1; 
}
Copy after login

Jetzt haben wir Zugriff auf den ersten und letzten Block und können bei einem gegebenen Block den vorherigen und nächsten herausfinden. Wir wissen auch, dass noch keine Blöcke zugewiesen wurden, wenn der Zeiger auf den ersten Block null ist. In diesem Fall weisen wir den Block also sofort zu und initialisieren sowohl den ersten als auch den letzten Block:

void *abmalloc(size_t size) { 
  if (size == 0) { 
    return NULL; 
  } 
  if (first == NULL) { 
    first = last = header_new(NULL, size, false); 
    return first + 1; 
  }
Copy after login

Wenn firstit nicht mehr NULL ist, sind bereits Blöcke zugewiesen, sodass wir mit der Suche nach einem wiederverwendbaren Block beginnen. Wir werden die Variablenheader weiterhin als Iterator verwenden, aber anstatt mit dem neuesten Block zu beginnen, beginnt die Suche beim ältesten:

  Header *header = first;
Copy after login

Bei jeder Iteration gehen wir zum nächsten Block in der Sequenz über, anstatt zum vorherigen Block rückwärts zu gehen:

  while (header != NULL) { 
    if (header->available && (header->size >= size)) { 
      header->available = false; 
      return header + 1; 
    } 
    header = header->next; 
  }
Copy after login

Die Logik bleibt dieselbe: Wenn wir einen verfügbaren Block ausreichender Größe finden, wird er zurückgegeben. Andernfalls, wenn nach dem Durchlaufen der Liste kein wiederverwendbarer Block gefunden wird, wird ein neuer Block zugewiesen:

  last = header_new(last, size, false);
Copy after login

Jetzt müssen wir den Block anpassen, der der letzte war (nach der Zuweisung der vorletzte). Es zeigte auf NULL, aber jetzt sollte es auf den neuen Block zeigen. Dazu setzen wir das nächste Feld des vorherigen Blocks auf den neuen letzten Block:

  last->previous->next = last; 
  return last + 1; 
}
Copy after login

Adjustments in abfree()

The function abfree() basically maintains the same structure, but now we must handle some edge cases. When we free blocks at the top of the heap, a new block becomes the last one, as we already do in this snippet:

    last = header->previous;
    brk(header)
Copy after login

Here, the pointer header references the last non-null block available on the stack. We have two possible scenarios:

  1. the current block has a previous block, which will become the new last block. In this case, we should set the pointer nextof this block to NULL.
  2. the current block does not have a previous block (i.e., it is the first and oldest block). When it is freed, the stack is empty. In this case, instead of trying to update a field of a non-existent block, we simply set it first to NULL, indicating that there are no more allocated blocks.

Here is how we implement it:

  last = header->previous; 
  if (last != NULL) { 
    last->next = NULL; 
  } else { 
    first = NULL; 
  } 
  brk(header);
Copy after login

Conclusion

Our functions abmalloc() and abfree() now look like this:

typedef struct Header {
  struct Header *previous, *next;
  size_t size;
  bool available;
} Header;

Header *first = NULL;
Header *last = NULL;

Header *header_new(Header *previous, size_t size, bool available) {
  Header *header = sbrk(sizeof(Header) + size);
  header->previous = previous;
  header->next = NULL;
  header->size = size;
  header->available = false;
  return header;
}

void *abmalloc(size_t size) {
  if (size == 0) {
    return NULL;
  }
  if (first == NULL) {
    first = last = header_new(NULL, size, false);
    return first + 1;
  }
  Header *header = first;
  while (header != NULL) {
    if (header->available && (header->size >= size)) {
      header->available = false;
      return header + 1;
    }
    header = header->next;
  }
  last = header_new(last, size, false);
  last->previous->next = last;
  return last + 1;
}

void abfree(void *ptr) {
  if (ptr == NULL) {
   return;
  }
  Header *header = (Header*) ptr - 1;
  if (header == last) {
    while ((header->previous != NULL) && header->previous->available) {
      header = header->previous;
    }
    last = header->previous;
    if (last != NULL) {
      last->next = NULL;
    } else {
      first = NULL;
    }
    brk(header);
  } else {
   header->available = true;
  }
 }
Copy after login

This change allows us to save considerably more memory. There are, however, still problems to solve. For example, consider the following scenario: we request the allocation of a memory block of 8 bytes, and abmalloc() reuse a block of, say, 1024 bytes. There is clearly a waste.

We will see how to solve this in the next post.

The above is the detailed content of Implementing malloc() and free() — old memory reused first. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C language data structure: data representation and operation of trees and graphs C language data structure: data representation and operation of trees and graphs Apr 04, 2025 am 11:18 AM

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth behind the C language file operation problem The truth behind the C language file operation problem Apr 04, 2025 am 11:24 AM

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

What are the basic requirements for c language functions What are the basic requirements for c language functions Apr 03, 2025 pm 10:06 PM

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values ​​to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

Function name definition in c language Function name definition in c language Apr 03, 2025 pm 10:03 PM

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

Concept of c language function Concept of c language function Apr 03, 2025 pm 10:09 PM

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

CS-Week 3 CS-Week 3 Apr 04, 2025 am 06:06 AM

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

See all articles