Home Web Front-end JS Tutorial Chunking in AI - The Secret Sauce You&#re Missing

Chunking in AI - The Secret Sauce You&#re Missing

Oct 10, 2024 am 11:10 AM

Chunking in AI - The Secret Sauce You

Hey folks! ?

You know what keeps me up at night? Thinking about how to make our AI systems smarter and more efficient. Today, I want to talk about something that might sound basic but is crucial when building kick-ass AI applications: chunking ✨.

What the heck is chunking anyway? ?

Think of chunking as your AI's way of breaking down a massive buffet of information into manageable, bite-sized portions. Just like how you wouldn't try to stuff an entire pizza in your mouth at once (or maybe you would, no judgment here!), your AI needs to break down large texts into smaller pieces to process them effectively.

This is especially important for what we call RAG (Retrieval-Augmented Generation) models. These bad boys don't just make stuff up - they actually go and fetch real information from external sources. Pretty neat, right?

Why should you care? ?

Look, if you're building anything that deals with text - whether it's a customer support chatbot or a fancy knowledge base search - getting chunking right is the difference between an AI that gives spot-on answers and one that's just... meh.

Too big chunks? Your model misses the point.
Too small chunks? It gets lost in the details.

Let's Get Our Hands Dirty: Real Examples ?

Python Example: Semantic Chunking

First, let's look at a Python example using LangChain for semantic chunking:

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import TextLoader

def semantic_chunk(file_path):
    # Load the document
    loader = TextLoader(file_path)
    document = loader.load()

    # Create a text splitter
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len,
        separators=["\n\n", "\n", " ", ""]
    )

    # Split the document into chunks
    chunks = text_splitter.split_documents(document)

    return chunks

# Example usage
chunks = semantic_chunk('knowledge_base.txt')
for i, chunk in enumerate(chunks):
    print(f"Chunk {i}: {chunk.page_content[:50]}...")
Copy after login

Node.js and CDK Example: Building a Knowledge Base

Now, let's build something real - a serverless knowledge base using AWS CDK and Node.js! ?

First, the CDK infrastructure (this is where the magic happens):

import * as cdk from 'aws-cdk-lib';
import * as s3 from 'aws-cdk-lib/aws-s3';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as opensearch from 'aws-cdk-lib/aws-opensearch';
import * as iam from 'aws-cdk-lib/aws-iam';

export class KnowledgeBaseStack extends cdk.Stack {
  constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {
    super(scope, id, props);

    // S3 bucket to store our documents
    const documentBucket = new s3.Bucket(this, 'DocumentBucket', {
      removalPolicy: cdk.RemovalPolicy.DESTROY,
    });

    // OpenSearch domain for storing our chunks
    const openSearchDomain = new opensearch.Domain(this, 'DocumentSearch', {
      version: opensearch.EngineVersion.OPENSEARCH_2_5,
      capacity: {
        dataNodes: 1,
        dataNodeInstanceType: 't3.small.search',
      },
      ebs: {
        volumeSize: 10,
      },
    });

    // Lambda function for processing documents
    const processorFunction = new lambda.Function(this, 'ProcessorFunction', {
      runtime: lambda.Runtime.NODEJS_18_X,
      handler: 'index.handler',
      code: lambda.Code.fromAsset('lambda'),
      environment: {
        OPENSEARCH_DOMAIN: openSearchDomain.domainEndpoint,
      },
      timeout: cdk.Duration.minutes(5),
    });

    // Grant permissions
    documentBucket.grantRead(processorFunction);
    openSearchDomain.grantWrite(processorFunction);
  }
}
Copy after login

And now, the Lambda function that does the chunking and indexing:

import { S3Event } from 'aws-lambda';
import { S3 } from 'aws-sdk';
import { Client } from '@opensearch-project/opensearch';
import { defaultProvider } from '@aws-sdk/credential-provider-node';
import { AwsSigv4Signer } from '@opensearch-project/opensearch/aws';

const s3 = new S3();
const CHUNK_SIZE = 1000;
const CHUNK_OVERLAP = 200;

// Create OpenSearch client
const client = new Client({
  ...AwsSigv4Signer({
    region: process.env.AWS_REGION,
    service: 'es',
    getCredentials: () => {
      const credentialsProvider = defaultProvider();
      return credentialsProvider();
    },
  }),
  node: `https://${process.env.OPENSEARCH_DOMAIN}`,
});

export const handler = async (event: S3Event) => {
  for (const record of event.Records) {
    const bucket = record.s3.bucket.name;
    const key = decodeURIComponent(record.s3.object.key.replace(/\+/g, ' '));

    // Get the document from S3
    const { Body } = await s3.getObject({ Bucket: bucket, Key: key }).promise();
    const text = Body.toString('utf-8');

    // Chunk the document
    const chunks = chunkText(text);

    // Index chunks in OpenSearch
    for (const [index, chunk] of chunks.entries()) {
      await client.index({
        index: 'knowledge-base',
        body: {
          content: chunk,
          documentKey: key,
          chunkIndex: index,
          timestamp: new Date().toISOString(),
        },
      });
    }
  }
};

function chunkText(text: string): string[] {
  const chunks: string[] = [];
  let start = 0;

  while (start < text.length) {
    const end = Math.min(start + CHUNK_SIZE, text.length);
    let chunk = text.slice(start, end);

    // Try to break at a sentence boundary
    const lastPeriod = chunk.lastIndexOf('.');
    if (lastPeriod !== -1 && lastPeriod !== chunk.length - 1) {
      chunk = chunk.slice(0, lastPeriod + 1);
    }

    chunks.push(chunk);
    start = Math.max(start + chunk.length - CHUNK_OVERLAP, start + 1);
  }

  return chunks;
}
Copy after login

How It All Works Together ?

  1. Document Upload: When you upload a document to the S3 bucket, it triggers our Lambda function.
  2. Processing: The Lambda function:
    • Retrieves the document from S3
    • Chunks it using our smart chunking algorithm
    • Indexes each chunk in OpenSearch with metadata
  3. Retrieval: Later, when your application needs to find information, it can query OpenSearch to find the most relevant chunks.

Here's a quick example of how you might query this knowledge base:

async function queryKnowledgeBase(query: string) {
  const response = await client.search({
    index: 'knowledge-base',
    body: {
      query: {
        multi_match: {
          query: query,
          fields: ['content'],
        },
      },
    },
  });

  return response.body.hits.hits.map(hit => ({
    content: hit._source.content,
    documentKey: hit._source.documentKey,
    score: hit._score,
  }));
}
Copy after login

The AWS Advantage ?️

Using AWS services like S3, Lambda, and OpenSearch gives us:

  • Serverless scalability (no servers to manage!)
  • Pay-per-use pricing (your wallet will thank you)
  • Managed services (less ops work = more coding fun)

Final Thoughts ?

There you have it, folks! A real-world example of how to implement chunking in a serverless knowledge base. The best part? This scales automatically and can handle documents of any size.

Remember, the key to good chunking is:

  1. Choose the right chunk size for your use case
  2. Consider overlap to maintain context
  3. Use natural boundaries when possible (like sentences or paragraphs)

What's your experience with building knowledge bases? Have you tried different chunking strategies? Let me know in the comments below! ?

The above is the detailed content of Chunking in AI - The Secret Sauce You&#re Missing. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1673
14
PHP Tutorial
1278
29
C# Tutorial
1257
24
Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript and the Web: Core Functionality and Use Cases JavaScript and the Web: Core Functionality and Use Cases Apr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

JavaScript in Action: Real-World Examples and Projects JavaScript in Action: Real-World Examples and Projects Apr 19, 2025 am 12:13 AM

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

Understanding the JavaScript Engine: Implementation Details Understanding the JavaScript Engine: Implementation Details Apr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: Community, Libraries, and Resources Python vs. JavaScript: Community, Libraries, and Resources Apr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Python vs. JavaScript: Development Environments and Tools Python vs. JavaScript: Development Environments and Tools Apr 26, 2025 am 12:09 AM

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.

The Role of C/C   in JavaScript Interpreters and Compilers The Role of C/C in JavaScript Interpreters and Compilers Apr 20, 2025 am 12:01 AM

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

Python vs. JavaScript: Use Cases and Applications Compared Python vs. JavaScript: Use Cases and Applications Compared Apr 21, 2025 am 12:01 AM

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.

See all articles