How to Implement Singly Linked List in JavaScript
Hi ?, welcome back to this series on linked lists. In our last article, we learned about the basics of linked lists, including their definition, terminologies, its difference with arrays, and the types of linked lists. I promised we'd dive deeper into the implementation of linked lists, so let's get started.
Course Outline
- Introduction
-
Implementing Singly Linked Lists
- Creating new Node
- Insert at the Beginning
- Insert at the End
- Delete a Node
- Search for a Node
- Traverse the List
- Conclusion
Introduction
As we've learned in the previous article, Linked Lists are fundamental data structures in the world of programming. They consist of nodes, where each node contains data and a reference (or link) to the next node (in a singly linked list) or both the next and previous nodes (in a doubly linked list) in the sequence. Unlike arrays, linked lists do not store elements in contiguous memory locations, allowing for efficient insertions and deletions.
Understanding the concept of a linked list is crucial for mastering data structures and algorithms. In this article, we'll dive deeper into the implementation of linked lists, starting with the basics of a singly linked list.
Implementing Singly Linked Lists
A Singly Linked List is the simplest type of linked list, where each node points to the next node in the sequence. Just like in the image below.
Now, it's time to start implementing our singly linked list basics operations. Shall we?
Creating new Node
Let's start by creating a new Node class. The Node class will have a constructor that takes in the data for the node and a next pointer which is initially set to null.
// Node class for Singly Linked List class Node { constructor(data) { this.data = data; this.next = null; } }
This newly created Node class (which represents a node in the linked list) can be visualized as below.
Before we proceed, let's create a new instance of our SinglyLinkedList class that will hold our linked list operations.
// Singly Linked List class class SinglyLinkedList { constructor() { this.head = null; } // Operations come here ? }
Insert at the Beginning
class SinglyLinkedList { constructor() { this.head = null; } // Previous `SinglyLinkedList` class codes here ? // . // . // . // Insert at the beginning insertAtBeginning(data) { const newNode = new Node(data); // Create a new node with the given data newNode.next = this.head; // Set the new node's next pointer to the current head this.head = newNode; // Update the head to be the new node } // Other operations come here ? // . // . // . }
Explanation: Inserting at the beginning is like someone new joining the line at the front. They become the new first person, linking to the previous first.
Insert at the End
class SinglyLinkedList { constructor() { this.head = null; } // Previous `SinglyLinkedList` class codes here ? // . // . // . // Insert at the end insertAtEnd(data) { const newNode = new Node(data); // Create a new node with the given data // check if the list does not have a head i.e the list is empty // NOTE: Every non-empty linked list will have a head if (!this.head) { this.head = newNode; // If the list is empty, set the new node as the head return; } let current = this.head; // Start at the head of the list while (current.next) { current = current.next; // Move to the next node in the list by updating the current node } current.next = newNode; // Set the next pointer of the last node to the new node } // Other operations come here ? // . // . // . }
Explanation: Inserting at the end is like someone joining the line at the very end. We need to walk to the end to find the last person, then link them to the new person.
Delete a Node
class SinglyLinkedList { constructor() { this.head = null; } // Previous `SinglyLinkedList` class codes here ? // . // . // . // Delete a node deleteNode(data) { if (!this.head) return; // If the list is empty, do nothing if (this.head.data === data) { this.head = this.head.next; // If the node to delete is the head, update the head to the next node return; } let current = this.head; while (current.next) { if (current.next.data === data) { current.next = current.next.next; // If the node to delete is found, update the next pointer to skip it return; } current = current.next; } } // Other operations come here ? // . // . // . }
Explanation: Deleting a node is like someone in the middle of the line deciding to leave. We find that person and connect the one before them to the one after them.
Search for a Node
class SinglyLinkedList { constructor() { this.head = null; } // Previous `SinglyLinkedList` class codes here ? // . // . // . // Search note search(data) { let current = this.head; // Start at the head of the list while (current) { if (current.data === data) { // If the data is found, return true return true; } current = current.next; // Move to the next node } return false; } // Other operations come here ? // . // . // . }
Explanation: Searching for a node is like trying to find a specific person in the line. We start at the front and ask each person until we find them or reach the end.
Traverse the List
class SinglyLinkedList { constructor() { this.head = null; } // Previous `SinglyLinkedList` class codes here ? // . // . // . traverse() { let current = this.head; // Start at the head of the list while (current) { console.log(current.data); // Print the data of the current node current = current.next; // Move to the next node } } } // End of class
Explanation: Traversing is like walking down the line and greeting each person. We start at the front and keep moving until we reach the end.
Conclusion
In this article, we've learned about the basics operations of linked lists and how to implement them in JavaScript. In the next article, we'll be learning about Doubly Linked Lists.
Remember, mastering linked lists requires practice. Continue solving problems and implementing these data structures in various scenarios.
Stay Updated and Connected
To ensure you don't miss any part of this series and to connect with me for more in-depth discussions on Software Development (Web, Server, Mobile or Scraping / Automation), data structures and algorithms, and other exciting tech topics, follow me on:
- GitHub
- X (Twitter)
Stay tuned and happy coding ???
The above is the detailed content of How to Implement Singly Linked List in JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.
