


Creating a ReAct Agent from the scratch with nodeJS ( wikipedia search )
Introduction
We'll create an AI agent capable of searching Wikipedia and answering questions based on the information it finds. This ReAct (Reason and Act) Agent uses the Google Generative AI API to process queries and generate responses. Our agent will be able to:
- Search Wikipedia for relevant information.
- Extract specific sections from Wikipedia pages.
- Reason about the information gathered and formulate answers.
[2] What is a ReAct Agent?
A ReAct Agent is a specific type of agent that follows a Reflection-Action cycle. It reflects on the current task, based on available information and actions it can perform, and then decides which action to take or whether to conclude the task.
[3] Planning the Agent
3.1 Required Tools
- Node.js
- Axios library for HTTP requests
- Google Generative AI API (gemini-1.5-flash)
- Wikipedia API
3.2 Agent Structure
Our ReAct Agent will have three main states:
- THOUGHT (Reflection)
- ACTION (Execution)
- ANSWER (Response)
[4] Implementing the Agent
Let's build the ReAct Agent step by step, highlighting each state.
4.1 Initial Setup
First, set up the project and install dependencies:
mkdir react-agent-project cd react-agent-project npm init -y npm install axios dotenv @google/generative-ai
Create a .env file at the project's root:
GOOGLE_AI_API_KEY=your_api_key_here
4.2 Creating the Tools.js File
Create Tools.js with the following content:
const axios = require("axios"); class Tools { static async wikipedia(q) { try { const response = await axios.get("https://en.wikipedia.org/w/api.php", { params: { action: "query", list: "search", srsearch: q, srwhat: "text", format: "json", srlimit: 4, }, }); const results = await Promise.all( response.data.query.search.map(async (searchResult) => { const sectionResponse = await axios.get( "https://en.wikipedia.org/w/api.php", { params: { action: "parse", pageid: searchResult.pageid, prop: "sections", format: "json", }, }, ); const sections = Object.values( sectionResponse.data.parse.sections, ).map((section) => `${section.index}, ${section.line}`); return { pageTitle: searchResult.title, snippet: searchResult.snippet, pageId: searchResult.pageid, sections: sections, }; }), ); return results .map( (result) => `Snippet: ${result.snippet}\nPageId: ${result.pageId}\nSections: ${JSON.stringify(result.sections)}`, ) .join("\n\n"); } catch (error) { console.error("Error fetching from Wikipedia:", error); return "Error fetching data from Wikipedia"; } } static async wikipedia_with_pageId(pageId, sectionId) { if (sectionId) { const response = await axios.get("https://en.wikipedia.org/w/api.php", { params: { action: "parse", format: "json", pageid: parseInt(pageId), prop: "wikitext", section: parseInt(sectionId), disabletoc: 1, }, }); return Object.values(response.data.parse?.wikitext ?? {})[0]?.substring( 0, 25000, ); } else { const response = await axios.get("https://en.wikipedia.org/w/api.php", { params: { action: "query", pageids: parseInt(pageId), prop: "extracts", exintro: true, explaintext: true, format: "json", }, }); return Object.values(response.data?.query.pages)[0]?.extract; } } } module.exports = Tools;
4.3 Creating the ReactAgent.js File
Create ReactAgent.js with the following content:
require("dotenv").config(); const { GoogleGenerativeAI } = require("@google/generative-ai"); const Tools = require("./Tools"); const genAI = new GoogleGenerativeAI(process.env.GOOGLE_AI_API_KEY); class ReActAgent { constructor(query, functions) { this.query = query; this.functions = new Set(functions); this.state = "THOUGHT"; this._history = []; this.model = genAI.getGenerativeModel({ model: "gemini-1.5-flash", temperature: 2, }); } get history() { return this._history; } pushHistory(value) { this._history.push(`\n ${value}`); } async run() { this.pushHistory(`**Task: ${this.query} **`); try { return await this.step(); } catch (e) { if (e.message.includes("exhausted")) { return "Sorry, I'm exhausted, I can't process your request anymore. ><"; } return "Unable to process your request, please try again? ><"; } } async step() { const colors = { reset: "\x1b[0m", yellow: "\x1b[33m", red: "\x1b[31m", cyan: "\x1b[36m", }; console.log("===================================="); console.log( `Next Movement: ${ this.state === "THOUGHT" ? colors.yellow : this.state === "ACTION" ? colors.red : this.state === "ANSWER" ? colors.cyan : colors.reset }${this.state}${colors.reset}`, ); console.log(`Last Movement: ${this.history[this.history.length - 1]}`); console.log("===================================="); switch (this.state) { case "THOUGHT": await this.thought(); break; case "ACTION": await this.action(); break; case "ANSWER": await this.answer(); break; } } async promptModel(prompt) { const result = await this.model.generateContent(prompt); const response = await result.response; return response.text(); } async thought() { const availableFunctions = JSON.stringify(Array.from(this.functions)); const historyContext = this.history.join("\n"); const prompt = `Your task to FullFill ${this.query}. Context contains all the reflection you made so far and the ActionResult you collected. AvailableActions are functions you can call whenever you need more data. Context: "${historyContext}" << AvailableActions: "${availableFunctions}" << Task: "${this.query}" << Reflect uppon Your Task using Context, ActionResult and AvailableActions to find your next_step. print your next_step with a Thought or FullFill Your Task `; const thought = await this.promptModel(prompt); this.pushHistory(`\n **${thought.trim()}**`); if ( thought.toLowerCase().includes("fullfill") || thought.toLowerCase().includes("fulfill") ) { this.state = "ANSWER"; return await this.step(); } this.state = "ACTION"; return await this.step(); } async action() { const action = await this.decideAction(); this.pushHistory(`** Action: ${action} **`); const result = await this.executeFunctionCall(action); this.pushHistory(`** ActionResult: ${result} **`); this.state = "THOUGHT"; return await this.step(); } async decideAction() { const availableFunctions = JSON.stringify(Array.from(this.functions)); const historyContext = this.history; const prompt = `Reflect uppon the Thought, Query and AvailableActions ${historyContext[historyContext.length - 2]} Thought <<< ${historyContext[historyContext.length - 1]} Query: "${this.query}" AvailableActions: ${availableFunctions} output only the function,parametervalues separated by a comma. For example: "wikipedia,ronaldinho gaucho, 1450"`; const decision = await this.promptModel(prompt); return `${decision.replace(/`/g, "").trim()}`; } async executeFunctionCall(functionCall) { const [functionName, ...args] = functionCall.split(","); const func = Tools[functionName.trim()]; if (func) { return await func.call(null, ...args); } throw new Error(`Function ${functionName} not found`); } async answer() { const historyContext = this.history; const prompt = `Based on the following context, provide a complete, detailed and descriptive formated answer for the Following Task: ${this.query} . Context: ${historyContext} Task: "${this.query}"`; const finalAnswer = await this.promptModel(prompt); this.history.push(`Answer: ${this.finalAnswer}`); console.log("WE WILL ANSWER >>>>>>>", finalAnswer); return finalAnswer; } } module.exports = ReActAgent;
4.4 Running the agent (index.js)
Create index.js with the following content:
const ReActAgent = require("./ReactAgent.js"); async function main() { const query = "What does England border with?"; const functions = [ [ "wikipedia", "params: query", "Semantic Search Wikipedia API for snippets, pageIds and sectionIds >> \n ex: Date brazil has been colonized? \n Brazil was colonized at 1500, pageId, sections : []", ], [ "wikipedia_with_pageId", "params : pageId, sectionId", "Search Wikipedia API for data using a pageId and a sectionIndex as params. \n ex: 1500, 1234 \n Section information about blablalbal", ], ]; const agent = new ReActAgent(query, functions); try { const result = await agent.run(); console.log("THE AGENT RETURN THE FOLLOWING >>>", result); } catch (e) { console.log("FAILED TO RUN T.T", e); } } main().catch(console.error);
[5] How the Wikipedia Part Works
The interaction with Wikipedia is done in two main steps:
-
Initial search (wikipedia function):
- Makes a request to the Wikipedia search API.
- Returns up to 4 relevant results for the query.
- For each result, it fetches the sections of the page.
-
Detailed search (wikipedia_with_pageId function):
- Uses the page ID and section ID to fetch specific content.
- Returns the text of the requested section.
This process allows the agent to first get an overview of topics related to the query and then dive deeper into specific sections as needed.
[6] Execution Flow Example
- The user asks a question.
- The agent enters the THOUGHT state and reflects on the question.
- It decides to search Wikipedia and enters the ACTION state.
- Executes the wikipedia function and obtains results.
- Returns to the THOUGHT state to reflect on the results.
- May decide to search for more details or a different approach.
- Repeats the THOUGHT and ACTION cycle as necessary.
- When it has sufficient information, it enters the ANSWER state.
- Generates a final answer based on all the information collected.
- Enters infinite loop whenever the wikipedia doesn't have the data to collect. Fix it with a timer =P
[7] Final Considerations
- The modular structure allows for easy addition of new tools or APIs.
- It's important to implement error handling and time/iteration limits to avoid infinite loops or excessive resource use.
- Use Temperature : 99999 lol
The above is the detailed content of Creating a ReAct Agent from the scratch with nodeJS ( wikipedia search ). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.
