Home Web Front-end JS Tutorial Aplicando o Open/Closed Principle com Typescript e Java

Aplicando o Open/Closed Principle com Typescript e Java

Aug 29, 2024 pm 02:38 PM

Aplicando o Open/Closed Principle com Typescript e Java

Concepts

Abstraction

Abstraction in object-oriented concepts is a practice of defining only essential aspects that a class must have. Classes, by nature, must be incomplete and imprecise so that we can model specificities through child classes. Thus arises the concept of daughter classes, mother classes and inheritance.

Heritage

Inheritance is the representation of relationships between classes in which one class extends another in order to inherit the behaviors of the parent class.

SOLID

SOLID is an acronym that represents five fundamental principles of object-oriented programming, proposed by Robert C. Martin - Uncle Bob. Here you can read more about his article.
These principles aim to improve the structure and maintenance of code, making it more flexible, scalable, and easier to understand. Such principles help the programmer to create more organized codes, dividing responsibilities, reducing dependencies, simplifying the refactoring process and promoting code reuse.

Open/Closed Principle

The "O" in the acronym stands for "Open/Closed Principle". The phrase that uncle bob used to define this principle was:

"A class must be open for extension but closed for modification"

According to this principle, we must develop an application ensuring that we write classes or modules in a generic way so that whenever you feel the need to extend the behavior of the class or object, you do not need to change the class itself. Extension here can be read as addition or change of procedures.

The objective is to allow the addition of new functionalities without the need to change existing code. This minimizes the risk of introducing bugs and makes the code more maintainable.

Practical application

Imagine you have a DiscountCalculator class that calculates product discounts. Initially, we have two product categories: Electronics and Clothing. Let's start without applying the OCP (Open/Closed Principle):

Java

class Product {
    private String name;
    private double price;

    public Product(String name, double price) {
        this.name = name;
        this.price = price;
    }

    public String getName() {
        return name;
    }

    public double getPrice() {
        return price;
    }
}

class DiscountCalculator {
    public double calculateDiscount(Product product) {
        if (product.getName().equals("Electronics")) {
            return product.getPrice() * 0.9; // 10% de desconto
        } else if (product.getName().equals("Clothing")) {
            return product.getPrice() * 0.8; // 20% de desconto
        }
        return product.getPrice();
    }
}

public class Main {
    public static void main(String[] args) {
        Product electronics = new Product("Electronics", 100);
        Product clothing = new Product("Clothing", 50);

        DiscountCalculator calculator = new DiscountCalculator();

        System.out.println(calculator.calculateDiscount(electronics)); // 90
        System.out.println(calculator.calculateDiscount(clothing)); // 40
    }
}
Copy after login

Typescript

class Product {
    private _name: string;
    private _price: number;

    constructor(name: string, price: number) {
        this._name = name;
        this._price = price;
    }

    public get name() { return this.name };

    public set name(value: string) { this.name = value };

    public get price() { return this.price };

    public set price(value: number) { this.price = value };
}

class DiscountCalculator {
    public calculateDiscount(product: Product): number {
        if (product.name === 'Electronics') {
            return product.price * 0.9; // 10% de desconto
        } else if (product.name === 'Clothing') {
            return product.price * 0.8; // 20% de desconto
        }
        return product.price;
    }
}

const electronics = new Product('Electronics', 100);
const clothing = new Product('Clothing', 50);

const calculator = new DiscountCalculator();

console.log(calculator.calculateDiscount(electronics)); // 90
console.log(calculator.calculateDiscount(clothing)); // 40
Copy after login

Problems with Not Applying OCP

Encapsulation Violation: Every time a new product type requires a different discount, it will be necessary to modify the calculateDiscount method, including a new conditional in the if.

Difficulty in maintenance: If the method grows with too many if/else or switches, it will become difficult to maintain and test.

Risk of introducing bugs: Changes to the method can introduce bugs into other parts of the code that depend on that method.

How to fix?

Now, let's apply the Open/Closed Principle by refactoring the code to allow the addition of new types of discounts without modifying the existing code.

Java

class Product {
    private String name;
    private double price;

    public Product(String name, double price) {
        this.name = name;
        this.price = price;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public double getPrice() {
        return price;
    }

    public void setPrice(double price) {
        this.price = price;
    }
}

interface DiscountStrategy {
    double calculate(Product product);
}

class ElectronicsDiscount implements DiscountStrategy {
    @Override
    public double calculate(Product product) {
        return product.getPrice() * 0.9; // 10% de desconto
    }
}

class ClothingDiscount implements DiscountStrategy {
    @Override
    public double calculate(Product product) {
        return product.getPrice() * 0.8; // 20% de desconto
    }
}

class NoDiscount implements DiscountStrategy {
    @Override
    public double calculate(Product product) {
        return product.getPrice();
    }
}

class DiscountCalculator {
    private DiscountStrategy discountStrategy;

    public DiscountCalculator(DiscountStrategy discountStrategy) {
        this.discountStrategy = discountStrategy;
    }

    public double calculateDiscount(Product product) {
        return discountStrategy.calculate(product);
    }
}

public class Main {
    public static void main(String[] args) {
        Product electronics = new Product("Electronics", 100);
        Product clothing = new Product("Clothing", 50);
        Product books = new Product("Books", 30);

        DiscountCalculator electronicsDiscount = new DiscountCalculator(new ElectronicsDiscount());
        DiscountCalculator clothingDiscount = new DiscountCalculator(new ClothingDiscount());
        DiscountCalculator booksDiscount = new DiscountCalculator(new NoDiscount());

        System.out.println(electronicsDiscount.calculateDiscount(electronics)); // 90
        System.out.println(clothingDiscount.calculateDiscount(clothing)); // 40
        System.out.println(booksDiscount.calculateDiscount(books)); // 30
    }
}
Copy after login

Typescript

class Product {
    private _name: string;
    private _price: number;

    constructor(name: string, price: number) {
        this._name = name;
        this._price = price;
    }

    public get name() { return this.name };

    public set name(value: string) { this.name = value };

    public get price() { return this.price };

    public set price(value: number) { this.price = value };
}

interface DiscountStrategy {
    calculate(product: Product): number;
}

class ElectronicsDiscount implements DiscountStrategy {
    calculate(product: Product): number {
        return product.price * 0.9; // 10% de desconto
    }
}

class ClothingDiscount implements DiscountStrategy {
    calculate(product: Product): number {
        return product.price * 0.8; // 20% de desconto
    }
}

class NoDiscount implements DiscountStrategy {
    calculate(product: Product): number {
        return product.price;
    }
}

class DiscountCalculator {
    private discountStrategy: DiscountStrategy;

    constructor(discountStrategy: DiscountStrategy) {
        this.discountStrategy = discountStrategy;
    }

    public calculateDiscount(product: Product): number {
        return this.discountStrategy.calculate(product);
    }
}

const electronics = new Product('Electronics', 100);
const clothing = new Product('Clothing', 50);
const books = new Product('Books', 30);

const electronicsDiscount = new DiscountCalculator(new ElectronicsDiscount());
const clothingDiscount = new DiscountCalculator(new ClothingDiscount());
const booksDiscount = new DiscountCalculator(new NoDiscount());

console.log(electronicsDiscount.calculateDiscount(electronics)); // 90
console.log(clothingDiscount.calculateDiscount(clothing)); // 40
console.log(booksDiscount.calculateDiscount(books)); // 30
Copy after login

Conclusion

Applying the Open/Closed Principle is essential if we need to add new features or behaviors without having to modify the existing code base so deeply. In fact, over time, we see that it is practically impossible to avoid 100% changing the code base, but it is possible to mitigate the gross amount of code to be changed to insert a new functionality.

This principle makes the code more adaptable to changes, whether to meet new requirements or correct errors.

The above is the detailed content of Aplicando o Open/Closed Principle com Typescript e Java. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1666
14
PHP Tutorial
1273
29
C# Tutorial
1253
24
JavaScript Engines: Comparing Implementations JavaScript Engines: Comparing Implementations Apr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

From C/C   to JavaScript: How It All Works From C/C to JavaScript: How It All Works Apr 14, 2025 am 12:05 AM

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

JavaScript and the Web: Core Functionality and Use Cases JavaScript and the Web: Core Functionality and Use Cases Apr 18, 2025 am 12:19 AM

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

JavaScript in Action: Real-World Examples and Projects JavaScript in Action: Real-World Examples and Projects Apr 19, 2025 am 12:13 AM

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

Understanding the JavaScript Engine: Implementation Details Understanding the JavaScript Engine: Implementation Details Apr 17, 2025 am 12:05 AM

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python vs. JavaScript: Community, Libraries, and Resources Python vs. JavaScript: Community, Libraries, and Resources Apr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Python vs. JavaScript: Development Environments and Tools Python vs. JavaScript: Development Environments and Tools Apr 26, 2025 am 12:09 AM

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.

See all articles