AI Model Can Identify Toddlers at Risk of Autism With 80% Accuracy, Study Finds
Recent research has demonstrated the potential of artificial intelligence (AI) to assist in identifying toddlers at risk of autism, with an accuracy rate of about 80% for children under two.
Artificial intelligence (AI) has shown promise in aiding the identification of toddlers at risk of autism, with an accuracy rate of about 80% for children under two, according to recent research.
A team of researchers from the Karolinska Institutet in Sweden developed a machine learning-based screening system. While the AI model cannot replace traditional diagnostic methods, it could help identify children early on who may need further clinical evaluation.
“Using [the] AI model, it can be possible to use available information and identify individuals with an elevated likelihood for autism so that they can get earlier diagnosis and help,” said Dr. Kristiina Tammimies, a study co-author.
However, she cautioned that the model should not be viewed as a standalone diagnostic tool, reiterating that the final diagnosis should be conducted through standard clinical methods.
The AI model was developed using data from the U.S.-based Spark study, which provided information on 15,330 children diagnosed with autism and an equal number of children without the condition.
From medical and background questionnaires, the researchers selected 28 measures that could be easily obtained before children reach 24 months of age, such as age at first smile, eating behaviors and age at first construction of longer sentences.
Using machine learning to analyze patterns in the data, the research team compared the identified patterns between autistic and non-autistic children to build four different models, selecting the most effective one for further testing.
When applied to a separate dataset of 11,936 participants, the model correctly identified 78.9% of the children as either autistic or non-autistic. Specifically, the accuracy was 78.5% for children aged up to two years, 84.2% for those aged two to four years and 79.2% for those aged four to ten years.
An additional test using a dataset of 2,854 autistic individuals resulted in a lower accuracy rate of 68%, which the researchers attributed to differences in the dataset, including some missing parameters.
The study identified several key measures that significantly influenced the AI model's prediction of autism, including problems with eating certain foods, the age at which a child first constructed longer sentences, the age at which a child achieved potty training and the age at which a child first smiled.
These factors, according to the research team, played a crucial role in the model’s ability to differentiate between autistic and non-autistic children.
Further analysis revealed that the model tended to identify autism more accurately in individuals who exhibited more severe symptoms and broader developmental issues. This finding suggests that the model might be more effective at recognizing cases with more noticeable developmental challenges accompanying autism.
Despite the promising results, some experts expressed concerns about the model's ability to correctly identify non-autistic children. With an 80% accuracy rate, the model could potentially lead to overdiagnosis and unnecessary stress for families, as 20% of non-autistic children might be incorrectly flagged as possibly autistic.
Professor Ginny Russell from the University of Exeter sounded a note of caution regarding the push for early diagnosis, especially in very young children.
“It can be hard to tell the difference between a toddler who has a severe impairment and one who is simply developing more slowly but will eventually ‘catch up.’ I would not recommend applying psychiatric labels to children under the age of two on the basis of a limited range of behavioral indicators, such as whether they eat certain foods,” Russell said.
The above is the detailed content of AI Model Can Identify Toddlers at Risk of Autism With 80% Accuracy, Study Finds. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The top ten cryptocurrency trading platforms in the world include Binance, OKX, Gate.io, Coinbase, Kraken, Huobi Global, Bitfinex, Bittrex, KuCoin and Poloniex, all of which provide a variety of trading methods and powerful security measures.

MeMebox 2.0 redefines crypto asset management through innovative architecture and performance breakthroughs. 1) It solves three major pain points: asset silos, income decay and paradox of security and convenience. 2) Through intelligent asset hubs, dynamic risk management and return enhancement engines, cross-chain transfer speed, average yield rate and security incident response speed are improved. 3) Provide users with asset visualization, policy automation and governance integration, realizing user value reconstruction. 4) Through ecological collaboration and compliance innovation, the overall effectiveness of the platform has been enhanced. 5) In the future, smart contract insurance pools, forecast market integration and AI-driven asset allocation will be launched to continue to lead the development of the industry.

Bitcoin’s price fluctuations today are affected by many factors such as macroeconomics, policies, and market sentiment. Investors need to pay attention to technical and fundamental analysis to make informed decisions.

Using the chrono library in C can allow you to control time and time intervals more accurately. Let's explore the charm of this library. C's chrono library is part of the standard library, which provides a modern way to deal with time and time intervals. For programmers who have suffered from time.h and ctime, chrono is undoubtedly a boon. It not only improves the readability and maintainability of the code, but also provides higher accuracy and flexibility. Let's start with the basics. The chrono library mainly includes the following key components: std::chrono::system_clock: represents the system clock, used to obtain the current time. std::chron

Recommended reliable digital currency trading platforms: 1. OKX, 2. Binance, 3. Coinbase, 4. Kraken, 5. Huobi, 6. KuCoin, 7. Bitfinex, 8. Gemini, 9. Bitstamp, 10. Poloniex, these platforms are known for their security, user experience and diverse functions, suitable for users at different levels of digital currency transactions

Bitcoin’s price ranges from $20,000 to $30,000. 1. Bitcoin’s price has fluctuated dramatically since 2009, reaching nearly $20,000 in 2017 and nearly $60,000 in 2021. 2. Prices are affected by factors such as market demand, supply, and macroeconomic environment. 3. Get real-time prices through exchanges, mobile apps and websites. 4. Bitcoin price is highly volatile, driven by market sentiment and external factors. 5. It has a certain relationship with traditional financial markets and is affected by global stock markets, the strength of the US dollar, etc. 6. The long-term trend is bullish, but risks need to be assessed with caution.

The top ten digital currency exchanges such as Binance, OKX, gate.io have improved their systems, efficient diversified transactions and strict security measures.

The top ten cryptocurrency exchanges in the world in 2025 include Binance, OKX, Gate.io, Coinbase, Kraken, Huobi, Bitfinex, KuCoin, Bittrex and Poloniex, all of which are known for their high trading volume and security.