Multiple Parallel AI Streams with the Vercel AI SDK
The Vercel AI SDK makes it easy to interact with LLM APIs like OpenAI, Anthropic and so on, and stream the data so it shows up in your web app rapidly as it loads. In this article we’ll learn how to run multiple prompts at the same time and see their results in parallel.
TL;DR: GitHub Repo is here.
Why would I want to do this?
It’s not uncommon in a web app to want to run multiple data-fetching requests at the same time. For example, in a hypothetical blogging system, when the dashboard interface loads, we might want to fetch the user’s profile data, posts they’ve created, and other user’s posts they’ve favorited all at the same time.
If the same dashboard was making requests to OpenAI at the same time, we might want to simultaneously ask OpenAI for tips on improving the user’s profile, and an analysis of their latest post at the same time. In theory we could use dozens of AI requests in parallel if we wanted to (even from completely different platforms and models), and and analyze information, generate content, and do all types of other tasks at the same time.
Installation & Setup
You can clone the GitHub repo containing the final result here.
To set up from scratch:
- Follow the Next.js App Router Quickstart. Just the basics; generate the app, install dependencies, and add your OpenAI API key.
- Install and set up shadcn/ui.
Setting up basic UI
The main component that does all the work will contain a form and some containers for the output. Using some basic shadcn-ui components, the form will look like this:
export function GenerationForm() { // State and other info will be defined here... return ( <form onSubmit={onSubmit} className="flex flex-col gap-3 w-full"> <div className="inline-block mb-4 w-full flex flex-row gap-1"> <Button type="submit">Generate News & Weather</Button> </div> {isGenerating ? ( <div className="flex flex-row w-full justify-center items-center p-4 transition-all"> <Spinner className="h-6 w-6 text-slate-900" /> </div> ) : null} <h3 className="font-bold">Historical Weather</h3> <div className="mt-4 mb-8 p-4 rounded-md shadow-md bg-blue-100"> {weather ? weather : null} </div> <h4 className="font-bold">Historical News</h4> <div className="mt-4 p-4 rounded-md shadow-md bg-green-100">{news ? news : null}</div> </form> ) }
You can see that we have a few things here:
- A form
- A loading animation (and an isGenerating flag for showing/hiding it)
- A container for rendering weather content
- A container for rendering news content
For now you can hardcode these values; they’ll all be pulled from our streams.
Setting up the React Server Components (RSCs)
The streamAnswer server action is what will do the work of creating and updating our streams.
The structure of the action is this:
export async function streamAnswer(question: string) { // Booleans for indicating whether each stream is currently streaming const isGeneratingStream1 = createStreamableValue(true); const isGeneratingStream2 = createStreamableValue(true); // The current stream values const weatherStream = createStreamableValue(""); const newsStream = createStreamableValue(""); // Create the first stream. Notice that we don't use await here, so that we // don't block the rest of this function from running. streamText({ // ... params, including the LLM prompt }).then(async (result) => { // Read from the async iterator. Set the stream value to each new word // received. for await (const value of result.textStream) { weatherStream.update(value || ""); } } finally { // Set isGenerating to false, and close that stream. isGeneratingStream1.update(false); isGeneratingStream1.done(); // Close the given stream so the request doesn't hang. weatherStream.done(); } }); // Same thing for the second stream. streamText({ // ... params }).then(async (result) => { // ... }) // Return any streams we want to read on the client. return { isGeneratingStream1: isGeneratingStream1.value, isGeneratingStream2: isGeneratingStream2.value, weatherStream: weatherStream.value, newsStream: newsStream.value, }; }
Writing the client code
The form’s onSubmit handler will do all the work here. Here’s the breakdown of how it works:
"use client"; import { SyntheticEvent, useState } from "react"; import { Button } from "./ui/button"; import { readStreamableValue, useUIState } from "ai/rsc"; import { streamAnswer } from "@/app/actions"; import { Spinner } from "./svgs/Spinner"; export function GenerationForm() { // State for loading flags const [isGeneratingStream1, setIsGeneratingStream1] = useState<boolean>(false); const [isGeneratingStream2, setIsGeneratingStream2] = useState<boolean>(false); // State for the LLM output streams const [weather, setWeather] = useState<string>(""); const [news, setNews] = useState<string>(""); // We'll hide the loader when both streams are done. const isGenerating = isGeneratingStream1 || isGeneratingStream2; async function onSubmit(e: SyntheticEvent) { e.preventDefault(); // Clear previous results. setNews(""); setWeather(""); // Call the server action. The returned object will have all the streams in it. const result = await streamAnswer(question); // Translate each stream into an async iterator so we can loop through // the values as they are generated. const isGeneratingStream1 = readStreamableValue(result.isGeneratingStream1); const isGeneratingStream2 = readStreamableValue(result.isGeneratingStream2); const weatherStream = readStreamableValue(result.weatherStream); const newsStream = readStreamableValue(result.newsStream); // Iterate through each stream, putting its values into state one by one. // Notice the IIFEs again! As on the server, these allow us to prevent blocking // the function, so that we can run these iterators in parallel. (async () => { for await (const value of isGeneratingStream1) { if (value != null) { setIsGeneratingStream1(value); } } })(); (async () => { for await (const value of isGeneratingStream2) { if (value != null) { setIsGeneratingStream2(value); } } })(); (async () => { for await (const value of weatherStream) { setWeather((existing) => (existing + value) as string); } })(); (async () => { for await (const value of newsStream) { setNews((existing) => (existing + value) as string); } })(); } return ( // ... The form code from before. ); }
Other fun things to try
- Streaming structured JSON data instead of text using streamObject()
- Streaming lots more things in parallel
- Streaming from different APIs at once
- Streaming different models with the same prompts for comparison (e.g., Cohere, Anthropic, Gemini, etc.)
- Streaming the UI from the server (using createStreamableUI() )
Further reading & links
- Server Actions and Mutations
- Vercel AI SDK
- streamText() API docs
- Next.js App Router Quickstart
The above is the detailed content of Multiple Parallel AI Streams with the Vercel AI SDK. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

JavaScript's application in the real world includes front-end and back-end development. 1) Display front-end applications by building a TODO list application, involving DOM operations and event processing. 2) Build RESTfulAPI through Node.js and Express to demonstrate back-end applications.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Both Python and JavaScript's choices in development environments are important. 1) Python's development environment includes PyCharm, JupyterNotebook and Anaconda, which are suitable for data science and rapid prototyping. 2) The development environment of JavaScript includes Node.js, VSCode and Webpack, which are suitable for front-end and back-end development. Choosing the right tools according to project needs can improve development efficiency and project success rate.

C and C play a vital role in the JavaScript engine, mainly used to implement interpreters and JIT compilers. 1) C is used to parse JavaScript source code and generate an abstract syntax tree. 2) C is responsible for generating and executing bytecode. 3) C implements the JIT compiler, optimizes and compiles hot-spot code at runtime, and significantly improves the execution efficiency of JavaScript.

Python is more suitable for data science and automation, while JavaScript is more suitable for front-end and full-stack development. 1. Python performs well in data science and machine learning, using libraries such as NumPy and Pandas for data processing and modeling. 2. Python is concise and efficient in automation and scripting. 3. JavaScript is indispensable in front-end development and is used to build dynamic web pages and single-page applications. 4. JavaScript plays a role in back-end development through Node.js and supports full-stack development.
