


Go concurrent programming: asynchronous programming and non-blocking IO
In Go, asynchronous programming and non-blocking IO can be used for concurrent programming. Asynchronous programming uses lightweight Goroutines to perform tasks in the background while the main program continues execution. Non-blocking IO uses the io.Reader interface to perform input/output operations without waiting for completion. These two concepts can be used in real-world applications such as efficient processing of web requests.
Go parallel programming: asynchronous programming and non-blocking IO
In the Go language, asynchronous programming and non-blocking IO are key concepts in concurrent programming. This article will delve into both concepts and demonstrate their real-world application through practical examples.
Asynchronous Programming
Asynchronous programming is a programming style in which events are handled as they occur rather than waiting for them to complete. In the Go language, asynchronous programming is mainly implemented through Goroutine. Goroutine is a lightweight thread in the Go language that can execute tasks concurrently in the background.
func main() { ch := make(chan string) // 启动一个Goroutine go func() { time.Sleep(1 * time.Second) ch <- "Hello, world!" }() // 主程序从通道中读取数据。如果数据尚未准备好,该行代码将阻塞 result := <-ch fmt.Println(result) // 输出:"Hello, world!" }
In the above example, the main program starts a Goroutine, which processes a task in the background. The main program does not have to wait for the Goroutine to complete before it can continue execution, during which time it can do other work.
Non-blocking IO
Non-blocking IO is an input/output operation that does not block program execution until the operation is completed. In the Go language, non-blocking IO is usually implemented using the io.Reader
interface.
import ( "bytes" "io" "log" ) func main() { // 创建一个Buffer作为io.Reader reader := bytes.NewBufferString("Hello, world!") // 创建一个缓冲区并从reader中读取数据 buf := make([]byte, 1024) n, err := reader.Read(buf) if err != nil { log.Fatal(err) } // 将读取到的数据转换成字符串 result := string(buf[:n]) fmt.Println(result) // 输出:"Hello, world!" }
In the above example, we use the io.Reader
interface to read data from a Buffer. Read operations are non-blocking, which means that the main program will not block even if the data is not ready yet.
Practical Case
Asynchronous programming and non-blocking IO are widely used in application development. A common use case is handling web requests.
import ( "fmt" "log" "net/http" // 导入第三方包 "github.com/gorilla/mux" ) func main() { // 创建一个mux路由器 router := mux.NewRouter() // 使用Goroutine处理请求 router.HandleFunc("/hello", func(w http.ResponseWriter, r *http.Request) { time.Sleep(1 * time.Second) fmt.Fprintf(w, "Hello, world!") }) // 监听端口 log.Fatal(http.ListenAndServe(":8080", router)) }
In this example, we create a web router using the Gorilla Mux third-party library. We use Goroutine to handle HTTP requests so that the main program can handle multiple requests at the same time.
Conclusion
Asynchronous programming and non-blocking IO are two important concepts in concurrent programming in Go language. By using them together, we can create high-performance, responsive applications.
The above is the detailed content of Go concurrent programming: asynchronous programming and non-blocking IO. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











In C++ concurrent programming, the concurrency-safe design of data structures is crucial: Critical section: Use a mutex lock to create a code block that allows only one thread to execute at the same time. Read-write lock: allows multiple threads to read at the same time, but only one thread to write at the same time. Lock-free data structures: Use atomic operations to achieve concurrency safety without locks. Practical case: Thread-safe queue: Use critical sections to protect queue operations and achieve thread safety.

In Go, WebSocket messages can be sent using the gorilla/websocket package. Specific steps: Establish a WebSocket connection. Send a text message: Call WriteMessage(websocket.TextMessage,[]byte("Message")). Send a binary message: call WriteMessage(websocket.BinaryMessage,[]byte{1,2,3}).

In Go, you can use regular expressions to match timestamps: compile a regular expression string, such as the one used to match ISO8601 timestamps: ^\d{4}-\d{2}-\d{2}T \d{2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$ . Use the regexp.MatchString function to check if a string matches a regular expression.

Go and the Go language are different entities with different characteristics. Go (also known as Golang) is known for its concurrency, fast compilation speed, memory management, and cross-platform advantages. Disadvantages of the Go language include a less rich ecosystem than other languages, a stricter syntax, and a lack of dynamic typing.

In C++ multi-threaded programming, the role of synchronization primitives is to ensure the correctness of multiple threads accessing shared resources. It includes: Mutex (Mutex): protects shared resources and prevents simultaneous access; Condition variable (ConditionVariable): thread Wait for specific conditions to be met before continuing execution; atomic operation: ensure that the operation is executed in an uninterruptible manner.

Memory leaks can cause Go program memory to continuously increase by: closing resources that are no longer in use, such as files, network connections, and database connections. Use weak references to prevent memory leaks and target objects for garbage collection when they are no longer strongly referenced. Using go coroutine, the coroutine stack memory will be automatically released when exiting to avoid memory leaks.

When passing a map to a function in Go, a copy will be created by default, and modifications to the copy will not affect the original map. If you need to modify the original map, you can pass it through a pointer. Empty maps need to be handled with care, because they are technically nil pointers, and passing an empty map to a function that expects a non-empty map will cause an error.

In Golang, error wrappers allow you to create new errors by appending contextual information to the original error. This can be used to unify the types of errors thrown by different libraries or components, simplifying debugging and error handling. The steps are as follows: Use the errors.Wrap function to wrap the original errors into new errors. The new error contains contextual information from the original error. Use fmt.Printf to output wrapped errors, providing more context and actionability. When handling different types of errors, use the errors.Wrap function to unify the error types.
