Python中分数的相关使用教程
你可能不需要经常处理分数,但当你需要时,Python的Fraction类会给你很大的帮助。在该指南中,我将提供一些有趣的实例,用于展示如何处理分数,突出显示一些很酷的功能。
1 基础
Fraction类在Lib/fractions.py文件中,所以可以这样导入:
from fractions import Fraction
有很多种实例化Fraction类的方法。
首先,你可以传入分子和分母:
>>> Fraction(1, 2) Fraction(1, 2)
或者利用另一个分数进行实例化:
>>> f = Fraction(1, 2) >>> Fraction(f) Fraction(1, 2)
使用一个浮点数进行实例化:
>>> Fraction(2.5) Fraction(5, 2)
或者使用一个 decimal:
>>> from decimal import Decimal >>> Fraction(Decimal('1.1')) Fraction(11, 10)
最后一种方法,可能是最有趣的一种方法,你可以使用一个字符串实例化Fraction类:
>>> Fraction('9/16') Fraction(9, 16)
本质上讲,Fraction类这么设计,目的就是为了让你在实例化该类之前不需要做很多处理。Fraction类知道如何处理多种不同的数据类型。
2 自动约分
约分并不是很难,但是对于一些复杂的分数,约分还是要费点事的。Fraction类在这方面特别有用,因为它能自动约分分数。
>>> Fraction(153, 272) Fraction(9, 16)
纯粹靠想,你可能无法约分153/172,但是Fraction类能很快地完成约分。
3 二元运算
你可以像对待整数和浮点数一样,在Fraction对象上执行二元运算。
两个分数进行相加操作:
>>> Fraction(1, 2) + Fraction(3, 4) Fraction(5, 4)
这样操作就很方便了,但是你也可以混合整数或浮点数。如你所料,Fraction对象和一个整数进行相加返回一个Fraction对象,但和一个浮点数进行相加返回一个浮点数。
>>> Fraction(5, 16) + 3 Fraction(53, 16) >>> Fraction(5, 16) + 3.0 3.3125
这里有一些其他的二元运算的例子:
>>> Fraction(5, 16) - Fraction(1, 4) Fraction(1, 16) >>> Fraction(1, 16) * Fraction(3, 16) Fraction(3, 256) >>> Fraction(3, 16) / Fraction(1, 8) Fraction(3, 2)
现在让我们试试乘方操作:
>>> Fraction(1, 8) ** Fraction(1, 2) 0.3535533905932738
它返回一个浮点数,可能是因为分数不能进行合理的计算。实际上我们可以使用limit_denominator方法得到一个近似的Fraction值。
>>> f = Fraction(1, 8) ** Fraction(1, 2) >>> Fraction(f).limit_denominator() Fraction(235416, 665857)
记住,你可以混合字符串和其他上边实例化部分中提到的数据类型。
>>> Fraction("1/2") + Fraction(2.0) Fraction(5, 2) >>> Fraction(2) * Fraction(" 1/2 ") Fraction(1, 1)
4 获取Fraction对象的属性
你已经有了一个Fraction对象,并且已经做了一些计算,现在我们如何访问它的属性呢?
不阅读文档的话,你或许会尝试Fraction.numerator和Fraction.denominator,事实证明你是正确的。
>>> f = Fraction(221, 234) + Fraction(1, 2) >>> f.numerator 13 >>> f.denominator 9
或者作为一个字符串,打印整个分数:
>>> print f 13/9 >>> a = str(f) >>> a '13/9'
这不是Fraction类的一部分,它是在fractions库中的。利用它你可以快速找到两个数的最大公约数。
首先导入:
from fractions import gcd
一些例子:
>>> gcd(100, 75) 25 >>> gcd(221, 234) 13
6 总结
希望你已经学到了一些关于在Python中处理分数的东西。如果你想阅读更多内容,可以查看文档。如果你感觉学起来非常有动力,可以看看源代码。
如果你有更有趣的分数使用方法,告诉我,我会将它们添加到指南中。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
