详解python单例模式与metaclass
单例模式的实现方式
将类实例绑定到类变量上
class Singleton(object): _instance = None def __new__(cls, *args): if not isinstance(cls._instance, cls): cls._instance = super(Singleton, cls).__new__(cls, *args) return cls._instance
但是子类在继承后可以重写__new__以失去单例特性
class D(Singleton): def __new__(cls, *args): return super(D, cls).__new__(cls, *args)
使用装饰器实现
def singleton(_cls): inst = {} def getinstance(*args, **kwargs): if _cls not in inst: inst[_cls] = _cls(*args, **kwargs) return inst[_cls] return getinstance @singleton class MyClass(object): pass
问题是这样装饰以后返回的不是类而是函数,当然你可以singleton里定义一个类来解决问题,但这样就显得很麻烦了
使用__metaclass__,这个方式最推荐
class Singleton(type): _inst = {} def __call__(cls, *args, **kwargs): if cls not in cls._inst: cls._inst[cls] = super(Singleton, cls).__call__(*args) return cls._inst[cls] class MyClass(object): __metaclass__ = Singleton
metaclass
元类就是用来创建类的东西,可以简单把元类称为“类工厂”,类是元类的实例。type就是Python的内建元类,type也是自己的元类,任何一个类
>>> type(MyClass) type >>> type(type) type
python在创建类MyClass的过程中,会在类的定义中寻找__metaclass__,如果存在则用其创建类MyClass,否则使用内建的type来创建类。对于类有继承的情况,如果当前类没有找到,会继续在父类中寻找__metaclass__,直到所有父类中都没有找到才使用type创建类。
如果模块里有__metaclass__的全局变量的话,其中的类都将以其为元类,亲自试了,没这个作用,无任何影响
查看type的定义,
type(object) -> the object's type
type(name, bases, dict) -> a new type
所以利用type定义一个类的元类,可以用函数返回一个上面第二种定义的对象,也可以继承type并重写其中的方法。
直接使用type生成的对象作为元类,函数作用是使属性变为大写
def update_(name, bases, dct): attrs = ((name, value) for name, value in dct.items() if not name.startswith('__')) uppercase_attr = {name.upper(): value for name, value in attrs} return type(name, bases, uppercase_attr) class Singleton(object): __metaclass__ = update_ abc = 2 d = Singleton() print d.ABC # 2
上一节中,单例模式元类实现用的是类继承方式,而对于第一种__new__的方式,本质上调用的是type.__new__,不过使用super能使继承更清晰一些并避免一些问题
这里简单说明一下,__new__是在__init__前调用的方法,会创建对象并返回,而__init__则是用传入的参数将对象初始化。看一下type中这两者以及__call__的实现
def __init__(cls, what, bases=None, dict=None): # known special case of type.__init__ """ type(object) -> the object's type type(name, bases, dict) -> a new type # (copied from class doc) """ pass @staticmethod # known case of __new__ def __new__(S, *more): # real signature unknown; restored from __doc__ """ T.__new__(S, ...) -> a new object with type S, a subtype of T """ pass def __call__(self, *more): # real signature unknown; restored from __doc__ """ x.__call__(...) <==> x(...) """ pass
前面提到类相当于元类的实例化,再联系创建单例模式时使用的函数,用的是__call__,其实用三种magic method中任何一种都是可以的,来看一下使用元类时各方法的调用情况
class Basic(type): def __new__(cls, name, bases, newattrs): print "new: %r %r %r %r" % (cls, name, bases, newattrs) return super(Basic, cls).__new__(cls, name, bases, newattrs) def __call__(self, *args): print "call: %r %r" % (self, args) return super(Basic, self).__call__(*args) def __init__(cls, name, bases, newattrs): print "init: %r %r %r %r" % (cls, name, bases, newattrs) super(Basic, cls).__init__(name, bases, dict) class Foo: __metaclass__ = Basic def __init__(self, *args, **kw): print "init: %r %r %r" % (self, args, kw) a = Foo('a') b = Foo('b')
结果
new: <class '__main__.Basic'> 'Foo' () {'__module__': '__main__', '__metaclass__': <class '__main__.Basic'>, '__init__': <function init at 0x106fd5320>} init: <class '__main__.Foo'> 'Foo' () {'__module__': '__main__', '__metaclass__': <class '__main__.Basic'>, '__init__': <function init at 0x106fd5320>} call: <class '__main__.Foo'> ('a',) init: <__main__.Foo object at 0x106fee990> ('a',) {} call: <class '__main__.Foo'> ('b',) init: <__main__.Foo object at 0x106feea50> ('b',) {}
元类的__init__和__new__只在创建类Foo调用了一次,而创建Foo的实例时,每次都会调用元类的__call__方法
以上就是本文的全部内容,对python单例模式与metaclass进行了描述,希望对大家的学习有所帮助。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
