Informix时间序列数据库解决海量数据处理的应用实例
Informix 时间序列(Informix TimeSeries)是 Informix 数据库解决海量数据处理的一项重要技术。该技术采用特殊数据存储方式,极大提高了时间相关数据的处理能力,相对于关系型数据库它的存储空间减半。在智能电表的应用里,用户在一个时间序列列中设定固定时
时间序列函数优越的查询速度远超过关系型。此等函数的应用是成就智能电网的基本手段。Informix 时间序列目前广泛应用于股票交易系统,网络管理系统,智能电表系统,电信计费系统等多个领域中取得了良好的效果。
1. 概述
Informix 时间序列(Informix TimeSeries)是 Informix 数据库解决海量数据处理的一项重要技术。该技术采用特殊数据存储方式,极大提高了时间相关数据的处理能力,相对于关系型数据库它的存储空间减半,查询速度提高。在智能电表里,用户在一个时间序列列中设定固定时间间隔的数据,并通过使用时间序列函数(TimeSeries Function)实现对这些数据的实时查询、更新、删除等操作。时间序列函数优越的查询性能远超过关系型数据库。
2. Informix 时间序列介绍
时间序列可以广泛应用于多个领域中,以下以智能电表系统为例通过与关系型数据表的对比来说明 Informix 时间序列的基本原理。
2.1 关系型表模型
关系型数据库表(Relational Database Table)模型采用行列结构,一般会包含用来标识唯一行的主键,每一行标识一条记录。如下表所示,主键为 (meter_id, data_date),即电表编号 + 时间点来唯一标识一条记录。一个电表在每一个有效时间点都有相应的记录。
图 1. 关系型表的表结构
2.2 Informix 时间序列模型
TimeSeries 模型把时间相关部分的数据存储在一个 TimeSeries 类型字段中。可以简单的把 TimeSeries 模型表分成两个部分:头部分和时间序列部分。其中头部分包含每一个电表的基本信息,如电表 ID 等,使用时间序列模型来表示一个电表可以省去大部分的重复信息,提高字段的存储和访问效率。如下图所示是一个时间序列模型表。
图 2. 时间序列表的表结构
2.3 时间序列模型和关系模型的比较
时间序列模型的这种存储模型适合与时间相关的大量数据的处理,下图是时间序列表和关系型表随查询范围变化查询时间比较图。
图 3. 时间序列模型和关系模型的比较图
从上图可以看出关系型数据库表随时间的增长,查询效率将下降越来越快,而对于 TimeSeries 性能受时间影响非常小。其查询效率是关系型表的几十倍。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Do not change the meaning of the original content, fine-tune the content, rewrite the content, and do not continue. "Quantile regression meets this need, providing prediction intervals with quantified chances. It is a statistical technique used to model the relationship between a predictor variable and a response variable, especially when the conditional distribution of the response variable is of interest When. Unlike traditional regression methods, quantile regression focuses on estimating the conditional magnitude of the response variable rather than the conditional mean. "Figure (A): Quantile regression Quantile regression is an estimate. A modeling method for the linear relationship between a set of regressors X and the quantiles of the explained variables Y. The existing regression model is actually a method to study the relationship between the explained variable and the explanatory variable. They focus on the relationship between explanatory variables and explained variables

Apple's latest releases of iOS18, iPadOS18 and macOS Sequoia systems have added an important feature to the Photos application, designed to help users easily recover photos and videos lost or damaged due to various reasons. The new feature introduces an album called "Recovered" in the Tools section of the Photos app that will automatically appear when a user has pictures or videos on their device that are not part of their photo library. The emergence of the "Recovered" album provides a solution for photos and videos lost due to database corruption, the camera application not saving to the photo library correctly, or a third-party application managing the photo library. Users only need a few simple steps

To handle database connection errors in PHP, you can use the following steps: Use mysqli_connect_errno() to obtain the error code. Use mysqli_connect_error() to get the error message. By capturing and logging these error messages, database connection issues can be easily identified and resolved, ensuring the smooth running of your application.

How to use MySQLi to establish a database connection in PHP: Include MySQLi extension (require_once) Create connection function (functionconnect_to_db) Call connection function ($conn=connect_to_db()) Execute query ($result=$conn->query()) Close connection ( $conn->close())

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

Using the database callback function in Golang can achieve: executing custom code after the specified database operation is completed. Add custom behavior through separate functions without writing additional code. Callback functions are available for insert, update, delete, and query operations. You must use the sql.Exec, sql.QueryRow, or sql.Query function to use the callback function.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

Through the Go standard library database/sql package, you can connect to remote databases such as MySQL, PostgreSQL or SQLite: create a connection string containing database connection information. Use the sql.Open() function to open a database connection. Perform database operations such as SQL queries and insert operations. Use defer to close the database connection to release resources.
