搞一些好玩的东西redis
日常开发中,总会接触到一些好玩的东西,比如这篇的redis,一说到redis,可能就有人跟memcache做比较了,是呀, memcache只能说是简单的kv内存数据结构,而redis支持的数据类型就丰富多了,当然最能让人看上眼的就是SortedSet。 有了它,我们就可以玩一些贪心
日常开发中,总会接触到一些好玩的东西,比如这篇的redis,一说到redis,可能就有人跟memcache做比较了,是呀,
memcache只能说是简单的kv内存数据结构,而redis支持的数据类型就丰富多了,当然最能让人看上眼的就是SortedSet。
有了它,我们就可以玩一些“贪心”的问题,网站空间,比如适合“贪心”的优先队列,说到优先队列,我们以前实现了仅仅是内存形式的,香港虚拟主机,
哎,内存毕竟是内存,当有海量数据的时候,最好能有一个序列化到硬盘的操作。。。恰恰这个场景redis就可以办到。。。
一:快速搭建
好了,网站空间,我们知道redis比较适合做的事情了,现在我们可以进行快速搭建。
第一步:下载redis-2.0.2.zip (32 bit)。然后改名为redis放在D盘中。
最重要的也就是下面两个:
redis-server.exe: 这个就是redis的服务端程序。
redis-cli.exe: 服务端开启后,我们的客户端就可以输入各种命令测试了。
从图中我们可以看到两点:
①:没有指定config file。
原来redis建议我们做一个配置文件,那我就搞段配置。
daemonize: 是否以“守护进程”的方式开启,当是守护进程的时候就不受控制台的影响了。
logfile: log文件位置。
database: 开启数据库的个数。
dbfilename: 数据快照文件名。
save * *: 保存快照的频率,第一个为时间,第二个为写操作。
将这些配置好后,我们再看看:
②:我们看到redis默认的开放端口为6379。
二:安装驱动
好了,redis已经搭建完毕了,现在我们就要用C#去操作redis,这也是我最渴望的功能,优先队列~,先下载C#驱动,
就可以看到如下3个dll。
最后我们做下小测试:
1 class Program 2 { Main(string[] args) 4 { , 6379); s = client.AddItemToSortedSet(, , 400); , , 300); , , 200); , , 100); , , 500); list = client.GetRangeFromSortedSet(, 0, 0); (var item in list) 19 { 20 Console.WriteLine(item); 21 } list = client.GetRangeFromSortedSetDesc(, 0, 0); (var item in list) 27 { 28 Console.WriteLine(item); 29 } 30 31 Console.Read(); 32 } 33 }

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information
