在优化SQL语句中使用虚拟索引
是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的
定义:虚拟索引(virtual index) 是指没有创建对应的物理段的索引。
虚拟索引的目的:是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的时候,通常会查看需要优化的语句的执行计划,在考虑是否需要在表的某列上建立索引时就可以用到虚拟索引。虚拟索引建立的时候因为其没有消耗主机的相关资源,因此可以在相当快的时间内建立完成。
下面我们来看一下试验:
首先建立两张测试表
create table bigtab as select rownum as id,a.* from sys.all_objects a;
create table smalltab as select rownum as id,a.* from sys.all_tables a;
多次运行以下语句,,以插入多一些测试数据:
insert into bigtab select ronum as id,a.* from sys.all_objects a;
insert into smalltab select rownum as id,a.* from sys.all_tables a;
查看需要执行语句的执行计划:
SQL> explain plan for select count(*) from bigtab a,smalltab b where a.object_name=b.table_name;
Explained.
SQL> select * from table(dbms_xplan.display());
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 3089226980
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 40 | 518 (1)| 00:00:07 |
| 1 | SORT AGGREGATE | | 1 | 40 | | |
|* 2 | HASH JOIN | | 99838 | 3899K| 518 (1)| 00:00:07 |
| 3 | TABLE ACCESS FULL| SMALLTAB | 15311 | 299K| 172 (0)| 00:00:03 |
| 4 | TABLE ACCESS FULL| BIGTAB | 85284 | 1665K| 345 (1)| 00:00:05 |
--------------------------------------------------------------------------------
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("A"."OBJECT_NAME"="B"."TABLE_NAME")
16 rows selected.
下面我们在两个表上创建两个虚拟索引,分别在object_name和table_name列上,看看优化器是否会使用这两个索引,以及优化器的成本会如何变化。
SQL> show parameter _use_nosegment
SQL> alter session set "_use_nosegment_indexes"=true;
Session altered.
SQL> show parameter _use_nosegment
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
_use_nosegment_indexes boolean TRUE
SQL> create index big_ind on bigtab(object_name) nosegment;
Index created.
SQL> create index small_ind on smalltab(table_name) nosegment;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL is suitable for beginners because it is simple to install, powerful and easy to manage data. 1. Simple installation and configuration, suitable for a variety of operating systems. 2. Support basic operations such as creating databases and tables, inserting, querying, updating and deleting data. 3. Provide advanced functions such as JOIN operations and subqueries. 4. Performance can be improved through indexing, query optimization and table partitioning. 5. Support backup, recovery and security measures to ensure data security and consistency.

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.
