Oracle执行计划中的连接方式nested loops join、sort merge joinn、hash join
Oracle执行计划中的连接方式nested loops join、sort merge joinn、hash join
关键字:nested loops join、sort merge joinn、hash join
嵌套循环(Nested Loops (NL))
假如有A、B两张表进行嵌套循环连接,那么Oracle会首先从A表中提取一条记录,然后去B表中查找相应的匹配记录,如果有的话,就把该条记录的信息推到等待返回的结果集中,然后再去从A表中提取第二条记录,去在B表中找第二条匹配的记录,如果符合就推到返回的结果集中,依次类推,直到A表中的数据全部被处理完成,将结果集返回,就完成了嵌套循环连接的操作。
(散列)哈希连接(Hash Join (HJ))
假如有A、B两张表进行哈希连接,那么ORACLE会首先将B表在内存中建立一棵以散列表形式存在的查询二叉树C,然后开始读取A表的第一条记录,,从C中去找匹配的记录,如果有,则推到结果集中。再提取A中的第二条记录,如果有,则推到结果集中,以此类推,直到A中没有记录,返回结果集。
(归并)排序合并连接(Sort Merge Join (SMJ) )
假如有A、B两张表进行排序合并连接,ORACLE会首先将A表进行排序,形成一张临时的“表”C,然后将B进行排序,形成一张临时的“表”D,然后将C与D进行合并操作,返回结果集。
如果从预获取的数据量的角度而言,如果B表参与计算的数据量比较小的话,则嵌套循环连接的效率就是比较高的,因为可以很少的IO就可以获取到最终的结果集。但是如果数据量比较大的话,hash join和sort merge join是比较有优势的。
如果从索引的角度而言,索引可以提高nested loops的效率,因为从B表获取数据进行操作,就类似于从单表中查询数据一样,table access full和by index的效率肯定是不一样的,但是这个也取决于B的参与计算的数据量,如果B表的数据都在可以被一次抓取的数据块的大小之内的话,那么索引未必会被使用到。
如果从内存的角度上,同样的数据量nested loops的内存占用应该是最小的,sort merge 应该是最大的,而hash join内存消耗在中间。只是一种感官的直觉,具体没有测试过,因为sort merge 需要创建两个排序表,而hash join则需要对B表创建一棵查询树。
怎么从hash的角度上来看呢?估计三种表都有hash的使用,使用hash更多的是为了提高查询的效率,比如8=power(2,3),如果使用hash,可能需要创建一棵hash树,就增大了空间的消耗,如果table access full的话,需要最少扫描1次,最多扫描8次。如果使用hash,则最少1次,最多3次,就可以了,使用空间获取时间上的优势。在这个里面,至少感觉到使用到hash的有nested loops中的索引和hash join。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.
