sqoop使用时 Oracle ORA-01555快照过旧的错误
前面提到了ORA-01555错误,那么现在来看一下ORA-01555错误是怎样产生的。由于回滚段是循环使用的,当事务提交以后,该事务占用的
关于Oracle ORA-01555快照过旧的错误
首先了解Oracle在什么情况下会产生ORA-01555错误:
假设有一张6000万行数据的testdb表,预计testdb全表扫描1次需要2个小时,参考过程如下:
1、在1点钟,用户A发出了select * from testdb;此时不管将来testdb怎么变化,正确的结果应该是用户A会看到在1点钟这个时刻的内容。
2、在1点30分,用户B执行了update命令,更新了testdb表中的第4100万行的这条记录,这时,用户A的全表扫描还没有到达第4100万条。毫无疑问,这个时候,第4100万行的这条记录是被写入了回滚段,假设是回滚段UNDOTS1,如果用户A的全表扫描到达了第4100万行,是应该会正确的从回滚段UNDOTS1中读取出1点钟时刻的内容的。
3、这时,,用户B将他刚才做的操作提交了,但是这时,系统仍然可以给用户A提供正确的数据,因为那第4100万行记录的内容仍然还在回滚段UNDOTS1里,系统可以根据SCN到回滚段里找到正确的数据,但要注意到,这时记录在UNDOTS1里的第4100万行记录已经发生了重大的改变:就是第4100万行在回滚段UNDOTS1里的数据有可能随时被覆盖掉,因为这条记录已经被提交了!
4、由于用户A的查询时间漫长,而业务在一直不断的进行,UNDOTS1回滚段在被多个不同的transaction使用着,这个回滚段里的extent循环到了第4100万行数据所在的extent,由于这条记录已经被标记提交了,所以这个extent是可以被其他transaction覆盖掉的!
5、到了1点45分,用户A的查询终于到了第4100万行,而这时已经出现了第4条说的情况,需要到回滚段UNDOTS1去找数据,但是已经被覆盖掉了,这时就出现了ORA-01555错误。
原因分析:"报表"程序执行时间漫长,在程序查询的过程中其他用户对"报表"进行了更新,被更新的数据写入了回滚段,当程序到回滚段找数据时,发现数据已经被覆盖掉,于是就出现了ORA-01555错误。另外"报表"程序执行效率不高也会造成ORA-01555错误。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.
