Oracle 内存结构(Memory Structure)
Oracle的内存结构包括两个部分:System Global Area(SGA)和Program Global Area(PGA)。 SGA:当一个实例启动的时候分配(all
Oracle的内存结构包括两个部分:System Global Area(SGA)和Program Global Area(PGA)。
SGA:当一个实例启动的时候分配(allocated),是一个实例的基本组成部分。
PGA:当一个Server Process启动的时候分配。Server Process上面已经讲到。
Memory -> SGA
SGA是动态的,可以通过SGA_MAX_SIZE参数来设置大小。SGA的增大和缩小有一个基本的单位granule。
在Sql plus我们可以查看SGA分配和granule。
SQL> show sga
SQL> select component,granule_size from
2 v$sga_dynamic_components;
SGA还有它的组成部件,这里主要介绍Shared Pool,Large Pool和Java Pool。当然还包括一些其他的buffer和cache,如Data Buffer Cache.在Oracle11g还多了Stream Pool。
Large Pool和Java Pool是SGA中可选的内存结构。前者在备份和IO处理以及并行操作时会用到,后者在使用Java的时候会用到。
Memory -> SGA -> Shared Poll
Shared Pool主要用来存储最近执行的绝大多数的SQL语句和最近使用的数据定义(data definitions)。我们可以通过SHARED_POOL_SIZE来设置其大小。语句为:ALERT SYSTEM SET SHARED_POOL_SIZE = 64M;Shared Pool包括两个主要的影响性能的内存结构:Library Cache和Data Dictionary Cache。
Libray Cache用来存储绝大多数的最近使用的SQL和PL/SQL语句,并提供最近使用语句的共享。它主要包括Shared SQL area和Shared PL/SQL area。它的大小是由Shared Pool决定的,它由最少最近使用机制管理(Least recently used,LRU algorithm)。
Data Dictionary Cache是一个存储大多数最近使用数据库中的定义的集合,包括数据库文件,表,列,用户,,权限等的信息。它为server process提供对象名称解析和访问验证(validate access)。它的大小也由Shared Pool决定。
Shared Pool还存储一些数据块(data blocks)和重做日志缓冲。
Memory -> PGA
每一个连接到Oracle数据库的用户都会有一个自己的PGA。它随用户进程的创建而创建,随用户进程的终结而终结。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.
